File: itkNoiseImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (101 lines) | stat: -rw-r--r-- 3,295 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkNoiseImageFilter_hxx
#define itkNoiseImageFilter_hxx

#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkImageRegionIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkOffset.h"
#include "itkTotalProgressReporter.h"

namespace itk
{
template <typename TInputImage, typename TOutputImage>
NoiseImageFilter<TInputImage, TOutputImage>::NoiseImageFilter()
{
  this->DynamicMultiThreadingOn();
  this->ThreaderUpdateProgressOff();
}

template <typename TInputImage, typename TOutputImage>
void
NoiseImageFilter<TInputImage, TOutputImage>::DynamicThreadedGenerateData(
  const OutputImageRegionType & outputRegionForThread)
{
  unsigned int i;

  ZeroFluxNeumannBoundaryCondition<InputImageType> nbc;

  ConstNeighborhoodIterator<InputImageType> bit;
  ImageRegionIterator<OutputImageType>      it;

  // Allocate output
  typename OutputImageType::Pointer     output = this->GetOutput();
  typename InputImageType::ConstPointer input = this->GetInput();

  // Find the data-set boundary "faces"
  NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<InputImageType>                        bC;
  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<InputImageType>::FaceListType faceList =
    bC(input, outputRegionForThread, this->GetRadius());

  TotalProgressReporter progress(this, output->GetRequestedRegion().GetNumberOfPixels());

  InputRealType value;
  InputRealType sum;
  InputRealType sumOfSquares;
  InputRealType var;
  InputRealType num;

  // Process each of the boundary faces.  These are N-d regions which border
  // the edge of the buffer.
  for (const auto & face : faceList)
  {
    bit = ConstNeighborhoodIterator<InputImageType>(this->GetRadius(), input, face);
    unsigned int neighborhoodSize = bit.Size();
    num = static_cast<InputRealType>(bit.Size());

    it = ImageRegionIterator<OutputImageType>(output, face);
    bit.OverrideBoundaryCondition(&nbc);
    bit.GoToBegin();

    while (!bit.IsAtEnd())
    {
      sum = InputRealType{};
      sumOfSquares = InputRealType{};
      for (i = 0; i < neighborhoodSize; ++i)
      {
        value = static_cast<InputRealType>(bit.GetPixel(i));
        sum += value;
        sumOfSquares += (value * value);
      }

      // calculate the standard deviation value
      var = (sumOfSquares - (sum * sum / num)) / (num - 1.0);
      it.Set(static_cast<OutputPixelType>(std::sqrt(var)));

      ++bit;
      ++it;
      progress.CompletedPixel();
    }
  }
}
} // end namespace itk

#endif