1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkRecursiveSeparableImageFilter_h
#define itkRecursiveSeparableImageFilter_h
#include "itkInPlaceImageFilter.h"
#include "itkNumericTraits.h"
#include "itkVariableLengthVector.h"
namespace itk
{
/** \class RecursiveSeparableImageFilter
* \brief Base class for recursive convolution with a kernel.
*
* RecursiveSeparableImageFilter is the base class for recursive
* filters that are applied in each dimension separately. If multi-component
* images are specified, the filtering operation works on each component
* independently.
*
* This class implements the recursive filtering
* method proposed by R.Deriche in IEEE-PAMI
* Vol.12, No.1, January 1990, pp 78-87.
*
* Details of the implementation are described in the technical report:
* R. Deriche, "Recursively Implementing The Gaussian and Its Derivatives",
* INRIA, 1993, ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-1893.ps.gz
*
* Further improvements of the algorithm are described in:
* G. Farnebäck & C.-F. Westin, "Improving Deriche-style Recursive Gaussian
* Filters". J Math Imaging Vis 26, 293–299 (2006).
* https://doi.org/10.1007/s10851-006-8464-z
*
* \ingroup ImageFilters
* \ingroup ITKImageFilterBase
*/
template <typename TInputImage, typename TOutputImage = TInputImage>
class ITK_TEMPLATE_EXPORT RecursiveSeparableImageFilter : public InPlaceImageFilter<TInputImage, TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(RecursiveSeparableImageFilter);
/** Standard class type aliases. */
using Self = RecursiveSeparableImageFilter;
using Superclass = InPlaceImageFilter<TInputImage, TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(RecursiveSeparableImageFilter);
/** Smart pointer type alias support */
using InputImagePointer = typename TInputImage::Pointer;
using InputImageConstPointer = typename TInputImage::ConstPointer;
/** Real type to be used in internal computations. RealType in general is
* templated over the pixel type. (For example for vector or tensor pixels,
* RealType is a vector or a tensor of doubles.) ScalarRealType is a type
* meant for scalars.
*/
using InputPixelType = typename TInputImage::PixelType;
using RealType = typename NumericTraits<InputPixelType>::RealType;
using ScalarRealType = typename NumericTraits<InputPixelType>::ScalarRealType;
using OutputImageRegionType = typename TOutputImage::RegionType;
/** Type of the input image */
using InputImageType = TInputImage;
/** Type of the output image */
using OutputImageType = TOutputImage;
/** Get the direction in which the filter is to be applied. */
itkGetConstMacro(Direction, unsigned int);
/** Set the direction in which the filter is to be applied. */
itkSetMacro(Direction, unsigned int);
/** Set Input Image. */
void
SetInputImage(const TInputImage *);
/** Get Input Image. */
const TInputImage *
GetInputImage();
protected:
RecursiveSeparableImageFilter();
~RecursiveSeparableImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
void
BeforeThreadedGenerateData() override;
void
GenerateData() override;
void
DynamicThreadedGenerateData(const OutputImageRegionType &) override;
/** RecursiveSeparableImageFilter needs all of the input only in the
* "Direction" dimension. Therefore we enlarge the output's
* RequestedRegion to this. Then the superclass's
* GenerateInputRequestedRegion method will copy the output region
* to the input.
*
* \sa ImageToImageFilter::GenerateInputRequestedRegion()
*/
void
EnlargeOutputRequestedRegion(DataObject * output) override;
/** Set up the coefficients of the filter to approximate a specific kernel.
* Typically it can be used to approximate a Gaussian or one of its
* derivatives. Parameter is the spacing along the dimension to
* filter. */
virtual void
SetUp(ScalarRealType spacing) = 0;
/** Apply the Recursive Filter to an array of data. This method is called
* for each line of the volume. Parameter "scratch" is a scratch
* area used for internal computations that is the same size as the
* parameters "outs" and "data". The scratch area must be allocated
* outside of this routine (this avoids memory allocation and
* deallocation in the inner loop of the overall algorithm. */
void
FilterDataArray(RealType * outs, const RealType * data, RealType * scratch, SizeValueType ln) const;
protected:
/** Causal coefficients that multiply the input data. */
ScalarRealType m_N0{};
ScalarRealType m_N1{};
ScalarRealType m_N2{};
ScalarRealType m_N3{};
/** Recursive coefficients that multiply previously computed values
* at the output. These are the same for the causal and
* anti-causal parts of the filter. */
ScalarRealType m_D1{};
ScalarRealType m_D2{};
ScalarRealType m_D3{};
ScalarRealType m_D4{};
/** Anti-causal coefficients that multiply the input data. */
ScalarRealType m_M1{};
ScalarRealType m_M2{};
ScalarRealType m_M3{};
ScalarRealType m_M4{};
/** Recursive coefficients to be used at the boundaries to simulate
* edge extension boundary conditions. */
ScalarRealType m_BN1{};
ScalarRealType m_BN2{};
ScalarRealType m_BN3{};
ScalarRealType m_BN4{};
ScalarRealType m_BM1{};
ScalarRealType m_BM2{};
ScalarRealType m_BM3{};
ScalarRealType m_BM4{};
template <typename T1, typename T2>
static inline void
MathEMAMAMAM(T1 & out,
const T1 & a1,
const T2 & b1,
const T1 & a2,
const T2 & b2,
const T1 & a3,
const T2 & b3,
const T1 & a4,
const T2 & b4)
{
out = a1 * b1 + a2 * b2 + a3 * b3 + a4 * b4;
}
template <typename T1, typename T2>
static inline void
MathEMAMAMAM(VariableLengthVector<T1> & out,
const VariableLengthVector<T1> & a1,
const T2 & b1,
const VariableLengthVector<T1> & a2,
const T2 & b2,
const VariableLengthVector<T1> & a3,
const T2 & b3,
const VariableLengthVector<T1> & a4,
const T2 & b4)
{
const unsigned int sz = a1.GetSize();
if (sz != out.GetSize())
{
out.SetSize(sz);
}
for (unsigned int i = 0; i < sz; ++i)
{
out[i] = a1[i] * b1 + a2[i] * b2 + a3[i] * b3 + a4[i] * b4;
}
}
template <typename T1, typename T2>
static inline void
MathSMAMAMAM(T1 & out,
const T1 & a1,
const T2 & b1,
const T1 & a2,
const T2 & b2,
const T1 & a3,
const T2 & b3,
const T1 & a4,
const T2 & b4)
{
out -= a1 * b1 + a2 * b2 + a3 * b3 + a4 * b4;
}
template <typename T1, typename T2>
static inline void
MathSMAMAMAM(VariableLengthVector<T1> & out,
const VariableLengthVector<T1> & a1,
const T2 & b1,
const VariableLengthVector<T1> & a2,
const T2 & b2,
const VariableLengthVector<T1> & a3,
const T2 & b3,
const VariableLengthVector<T1> & a4,
const T2 & b4)
{
const unsigned int sz = a1.GetSize();
if (sz != out.GetSize())
{
out.SetSize(sz);
}
for (unsigned int i = 0; i < sz; ++i)
{
out[i] -= a1[i] * b1 + a2[i] * b2 + a3[i] * b3 + a4[i] * b4;
}
}
private:
/** Direction in which the filter is to be applied
* this should be in the range [0,ImageDimension-1]. */
unsigned int m_Direction{ 0 };
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkRecursiveSeparableImageFilter.hxx"
#endif
#endif
|