1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkGradientImageFilter_h
#define itkGradientImageFilter_h
#include "itkImageToImageFilter.h"
#include "itkCovariantVector.h"
#include "itkImageRegionIterator.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
#include <memory> // For unique_ptr.
namespace itk
{
template <typename TPixelType, unsigned int VImageDimension>
class VectorImage;
/**
* \class GradientImageFilter
* \brief Computes the gradient of an image using directional derivatives.
*
* Computes the gradient of an image using directional derivatives.
* The directional derivative at each pixel location is computed by
* convolution with a first-order derivative operator.
*
* The second template parameter defines the value type used in the
* derivative operator (defaults to float). The third template
* parameter defines the value type used for output image (defaults to
* float). The output image is defined as a covariant vector image
* whose value type is specified as this third template parameter.
*
*
* \sa Image
* \sa Neighborhood
* \sa NeighborhoodOperator
* \sa NeighborhoodIterator
*
* \ingroup GradientFilters
* \ingroup ITKImageGradient
*
* \sphinx
* \sphinxexample{Filtering/ImageGradient/GradientOfVectorImage,Gradient Of Vector Image}
* \sphinxexample{Filtering/ImageGradient/ComputeAndDisplayGradient,Compute And Display Gradient Of Image}
* \endsphinx
*/
template <typename TInputImage,
typename TOperatorValueType = float,
typename TOutputValueType = float,
typename TOutputImageType =
Image<CovariantVector<TOutputValueType, TInputImage::ImageDimension>, TInputImage::ImageDimension>>
class ITK_TEMPLATE_EXPORT GradientImageFilter : public ImageToImageFilter<TInputImage, TOutputImageType>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(GradientImageFilter);
/** Extract dimension from input image. */
static constexpr unsigned int InputImageDimension = TInputImage::ImageDimension;
static constexpr unsigned int OutputImageDimension = TOutputImageType::ImageDimension;
/** Convenient type alias for simplifying declarations. */
using InputImageType = TInputImage;
using InputImagePointer = typename InputImageType::Pointer;
using OutputImageType = TOutputImageType;
using OutputImagePointer = typename OutputImageType::Pointer;
/** Standard class type aliases. */
using Self = GradientImageFilter;
using Superclass = ImageToImageFilter<InputImageType, OutputImageType>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(GradientImageFilter);
/** Image type alias support */
using InputPixelType = typename InputImageType::PixelType;
using OperatorValueType = TOperatorValueType;
using OutputValueType = TOutputValueType;
using OutputPixelType = typename OutputImageType::PixelType;
using CovariantVectorType = CovariantVector<OutputValueType, Self::OutputImageDimension>;
using OutputImageRegionType = typename OutputImageType::RegionType;
/** GradientImageFilter needs a larger input requested region than
* the output requested region. As such, GradientImageFilter needs
* to provide an implementation for GenerateInputRequestedRegion()
* in order to inform the pipeline execution model.
*
* \sa ImageToImageFilter::GenerateInputRequestedRegion() */
void
GenerateInputRequestedRegion() override;
/** Set/Get whether or not the filter will use the spacing of the input
* image in its calculations. Use On to take the image spacing information
* into account and to compute the derivatives in physical space; use Off to
* ignore the image spacing and to compute the derivatives in isotropic
* voxel space. Default is On. */
itkSetMacro(UseImageSpacing, bool);
itkGetConstMacro(UseImageSpacing, bool);
itkBooleanMacro(UseImageSpacing);
#if !defined(ITK_FUTURE_LEGACY_REMOVE)
/** Use the image spacing information in calculations. Use this option if you
want derivatives in physical space. Default is UseImageSpacingOn.
\deprecated Use GradientImageFilter::UseImageSpacingOn instead. */
void
SetUseImageSpacingOn()
{
this->SetUseImageSpacing(true);
}
/** Ignore the image spacing. Use this option if you want derivatives in
isotropic pixel space. Default is UseImageSpacingOn.
\deprecated Use GradientImageFilter::UseImageSpacingOff instead. */
void
SetUseImageSpacingOff()
{
this->SetUseImageSpacing(false);
}
#endif
/** Allows to change the default boundary condition */
void
OverrideBoundaryCondition(ImageBoundaryCondition<TInputImage> * boundaryCondition);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(InputConvertibleToOutputCheck, (Concept::Convertible<InputPixelType, OutputValueType>));
itkConceptMacro(OutputHasNumericTraitsCheck, (Concept::HasNumericTraits<OutputValueType>));
// End concept checking
#endif
/** The UseImageDirection flag determines whether image derivatives are
* computed with respect to the image grid or with respect to the physical
* space. When this flag is ON the derivatives are computed with respect to
* the coordinate system of physical space. The difference is whether we take
* into account the image Direction or not. The flag ON will take into
* account the image direction and will result in an extra matrix
* multiplication compared to the amount of computation performed when the
* flag is OFF.
* The default value of this flag is On.
*/
itkSetMacro(UseImageDirection, bool);
itkGetConstMacro(UseImageDirection, bool);
itkBooleanMacro(UseImageDirection);
protected:
GradientImageFilter();
~GradientImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** GradientImageFilter can be implemented as a multithreaded filter.
* Therefore, this implementation provides a DynamicThreadedGenerateData()
* routine which is called for each processing thread. The output
* image data is allocated automatically by the superclass prior to
* calling DynamicThreadedGenerateData(). DynamicThreadedGenerateData can only
* write to the portion of the output image specified by the
* parameter "outputRegionForThread"
*
* \sa ImageToImageFilter::ThreadedGenerateData(),
* ImageToImageFilter::GenerateData() */
void
DynamicThreadedGenerateData(const OutputImageRegionType & outputRegionForThread) override;
private:
void
GenerateOutputInformation() override;
// An overloaded method which may transform the gradient to a
// physical vector and converts to the correct output pixel type.
template <typename TValue>
void
SetOutputPixel(ImageRegionIterator<VectorImage<TValue, OutputImageDimension>> & it, CovariantVectorType & gradient)
{
if (this->m_UseImageDirection)
{
CovariantVectorType physicalGradient;
it.GetImage()->TransformLocalVectorToPhysicalVector(gradient, physicalGradient);
it.Set(OutputPixelType(physicalGradient.GetDataPointer(), InputImageDimension, false));
}
else
{
it.Set(OutputPixelType(gradient.GetDataPointer(), InputImageDimension, false));
}
}
template <typename T>
void
SetOutputPixel(ImageRegionIterator<T> & it, CovariantVectorType & gradient)
{
// This uses the more efficient set by reference method
if (this->m_UseImageDirection)
{
it.GetImage()->TransformLocalVectorToPhysicalVector(gradient, it.Value());
}
else
{
it.Value() = gradient;
}
}
bool m_UseImageSpacing{ true };
// flag to take or not the image direction into account
// when computing the derivatives.
bool m_UseImageDirection{ true };
// allow setting the the m_BoundaryCondition
std::unique_ptr<ImageBoundaryCondition<TInputImage, TInputImage>> m_BoundaryCondition{
std::make_unique<ZeroFluxNeumannBoundaryCondition<TInputImage>>()
};
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkGradientImageFilter.hxx"
#endif
#endif
|