1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkGradientImageFilter_hxx
#define itkGradientImageFilter_hxx
#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkImageRegionIterator.h"
#include "itkDerivativeOperator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkOffset.h"
#include "itkTotalProgressReporter.h"
#include "itkMath.h"
namespace itk
{
template <typename TInputImage, typename TOperatorValueType, typename TOutputValueType, typename TOutputImageType>
GradientImageFilter<TInputImage, TOperatorValueType, TOutputValueType, TOutputImageType>::GradientImageFilter()
{
this->DynamicMultiThreadingOn();
this->ThreaderUpdateProgressOff();
}
template <typename TInputImage, typename TOperatorValueType, typename TOutputValue, typename TOutputImage>
void
GradientImageFilter<TInputImage, TOperatorValueType, TOutputValue, TOutputImage>::OverrideBoundaryCondition(
ImageBoundaryCondition<TInputImage> * boundaryCondition)
{
m_BoundaryCondition.reset(boundaryCondition);
}
template <typename TInputImage, typename TOperatorValueType, typename TOutputValueType, typename TOutputImageType>
void
GradientImageFilter<TInputImage, TOperatorValueType, TOutputValueType, TOutputImageType>::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// get pointers to the input and output
InputImagePointer inputPtr = const_cast<InputImageType *>(this->GetInput());
OutputImagePointer outputPtr = this->GetOutput();
if (!inputPtr || !outputPtr)
{
return;
}
// get a copy of the input requested region (should equal the output
// requested region)
typename TInputImage::RegionType inputRequestedRegion = inputPtr->GetRequestedRegion();
// pad the input requested region by one, which is the value of the first
// coordinate of the operator radius.
inputRequestedRegion.PadByRadius(1);
// crop the input requested region at the input's largest possible region
if (inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion()))
{
inputPtr->SetRequestedRegion(inputRequestedRegion);
return;
}
else
{
// Couldn't crop the region (requested region is outside the largest
// possible region). Throw an exception.
// store what we tried to request (prior to trying to crop)
inputPtr->SetRequestedRegion(inputRequestedRegion);
// build an exception
InvalidRequestedRegionError e(__FILE__, __LINE__);
e.SetLocation(ITK_LOCATION);
e.SetDescription("Requested region is (at least partially) outside the largest possible region.");
e.SetDataObject(inputPtr);
throw e;
}
}
template <typename TInputImage, typename TOperatorValueType, typename TOutputValueType, typename TOutputImageType>
void
GradientImageFilter<TInputImage, TOperatorValueType, TOutputValueType, TOutputImageType>::DynamicThreadedGenerateData(
const OutputImageRegionType & outputRegionForThread)
{
NeighborhoodInnerProduct<InputImageType, OperatorValueType, OutputValueType> SIP;
OutputImageType * outputImage = this->GetOutput();
const InputImageType * inputImage = this->GetInput();
// Set up operators
DerivativeOperator<OperatorValueType, InputImageDimension> op[InputImageDimension];
for (unsigned int i = 0; i < InputImageDimension; ++i)
{
// The operator has default values for its direction (0) and its order (1).
op[i].CreateDirectional();
// Reverse order of coefficients for the convolution with the image to
// follow.
op[i].FlipAxes();
// Take into account the pixel spacing if necessary
if (m_UseImageSpacing)
{
if (this->GetInput()->GetSpacing()[i] == 0.0)
{
itkExceptionMacro("Image spacing cannot be zero.");
}
else
{
op[i].ScaleCoefficients(1.0 / this->GetInput()->GetSpacing()[i]);
}
}
}
// Set the iterator radius to one, which is the value of the first
// coordinate of the operator radius.
static constexpr auto radius = Size<InputImageDimension>::Filled(1);
// Find the data-set boundary "faces"
NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<InputImageType> bC;
typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<InputImageType>::FaceListType faceList =
bC(inputImage, outputRegionForThread, radius);
TotalProgressReporter progress(this, this->GetOutput()->GetRequestedRegion().GetNumberOfPixels());
// Initialize the x_slice array
ConstNeighborhoodIterator<InputImageType> nit(radius, inputImage, faceList.front());
std::slice x_slice[InputImageDimension];
for (unsigned int i = 0; i < InputImageDimension; ++i)
{
static constexpr SizeValueType neighborhoodSize = Math::UnsignedPower(3, InputImageDimension);
static constexpr SizeValueType center = neighborhoodSize / 2;
x_slice[i] = std::slice(center - nit.GetStride(i), op[i].GetSize()[0], nit.GetStride(i));
}
CovariantVectorType gradient;
// Process non-boundary face and then each of the boundary faces.
// These are N-d regions which border the edge of the buffer.
for (const auto & face : faceList)
{
nit = ConstNeighborhoodIterator<InputImageType>(radius, inputImage, face);
ImageRegionIterator<OutputImageType> it(outputImage, face);
nit.OverrideBoundaryCondition(m_BoundaryCondition.get());
nit.GoToBegin();
while (!nit.IsAtEnd())
{
for (unsigned int i = 0; i < InputImageDimension; ++i)
{
gradient[i] = SIP(x_slice[i], nit, op[i]);
}
// This method optionally performs a transform for Physical
// coordinates and potential conversion to a different output
// pixel type.
this->SetOutputPixel(it, gradient);
++nit;
++it;
progress.CompletedPixel();
}
}
}
template <typename TInputImage, typename TOperatorValueType, typename TOutputValueType, typename TOutputImageType>
void
GradientImageFilter<TInputImage, TOperatorValueType, TOutputValueType, TOutputImageType>::GenerateOutputInformation()
{
// this methods is overloaded so that if the output image is a
// VectorImage then the correct number of components are set.
Superclass::GenerateOutputInformation();
OutputImageType * output = this->GetOutput();
if (!output)
{
return;
}
if (output->GetNumberOfComponentsPerPixel() != InputImageDimension)
{
output->SetNumberOfComponentsPerPixel(InputImageDimension);
}
}
template <typename TInputImage, typename TOperatorValueType, typename TOutputValueType, typename TOutputImageType>
void
GradientImageFilter<TInputImage, TOperatorValueType, TOutputValueType, TOutputImageType>::PrintSelf(std::ostream & os,
Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "UseImageSpacing: " << (m_UseImageSpacing ? "On" : "Off") << std::endl;
os << indent << "UseImageDirection: " << (m_UseImageDirection ? "On" : "Off") << std::endl;
os << indent << "BoundaryCondition: ";
if (m_BoundaryCondition != nullptr)
{
os << m_BoundaryCondition.get() << std::endl;
}
else
{
os << "(null)" << std::endl;
}
}
} // end namespace itk
#endif
|