File: itkGradientRecursiveGaussianImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (269 lines) | stat: -rw-r--r-- 10,113 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkGradientRecursiveGaussianImageFilter_h
#define itkGradientRecursiveGaussianImageFilter_h

#include "itkRecursiveGaussianImageFilter.h"
#include "itkNthElementImageAdaptor.h"
#include "itkImage.h"
#include "itkCovariantVector.h"
#include "itkDefaultConvertPixelTraits.h"
#include "itkProgressAccumulator.h"
#include "itkImageRegionIterator.h"
#include "itkVectorImage.h"
#include <vector>

namespace itk
{
/**
 * \class GradientRecursiveGaussianImageFilter
 * \brief Computes the gradient of an image by convolution
 *        with the first derivative of a Gaussian.
 *
 * This filter is implemented using the recursive gaussian
 * filters.
 *
 * This filter supports both scalar and vector pixel types
 * within the input image, including VectorImage type.
 *
 * \ingroup GradientFilters
 * \ingroup SingleThreaded
 * \ingroup ITKImageGradient
 *
 * \sphinx
 * \sphinxexample{Filtering/ImageGradient/ApplyGradientRecursiveGaussianWithVectorInput,Apply
 * GradientRecursiveGaussianImageFilter on Image with Vector type}
 * \sphinxexample{Filtering/ImageGradient/ImplementationOfSnakes,Implementation Of Snakes}
 * \endsphinx
 */
template <
  typename TInputImage,
  typename TOutputImage = Image<
    CovariantVector<typename NumericTraits<typename TInputImage::PixelType>::RealType, TInputImage::ImageDimension>,
    TInputImage::ImageDimension>>
class ITK_TEMPLATE_EXPORT GradientRecursiveGaussianImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(GradientRecursiveGaussianImageFilter);

  /** Standard class type aliases. */
  using Self = GradientRecursiveGaussianImageFilter;
  using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Pixel Type of the input image. May be scalar or vector. */
  using InputImageType = TInputImage;
  using PixelType = typename TInputImage::PixelType;
  using RealType = typename NumericTraits<PixelType>::RealType;
  using ScalarRealType = typename NumericTraits<PixelType>::ScalarRealType;

  /** Define the image type for internal computations
      RealType is usually 'double' in NumericTraits.
      Here we prefer float in order to save memory.  */
  using InternalRealType = typename NumericTraits<RealType>::FloatType;
  using InternalScalarRealType = typename NumericTraits<InternalRealType>::ValueType;

  /** Image dimension. */
  static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;

  /** Gradient vector type alias */
  using GradientVectorType = CovariantVector<ScalarRealType, ImageDimension>;

  /** Define the image type for internal computations
      RealType is usually 'double' in NumericTraits.
      Here we prefer float in order to save memory.  */
  using RealImageType = Image<InternalRealType, Self::ImageDimension>;


  /**  Output Image Nth Element Adaptor
   *  This adaptor allows to use conventional scalar
   *  smoothing filters to compute each one of the
   *  components of the gradient image pixels. */
  using OutputImageAdaptorType = NthElementImageAdaptor<TOutputImage, InternalScalarRealType>;

  using OutputImageAdaptorPointer = typename OutputImageAdaptorType::Pointer;

  /** Define the type for the sigma array **/
  using SigmaArrayType = FixedArray<ScalarRealType, Self::ImageDimension>;

  /**  Smoothing filter type */
  using GaussianFilterType = RecursiveGaussianImageFilter<RealImageType, RealImageType>;

  /**  Derivative filter type, it will be the first in the pipeline  */
  using DerivativeFilterType = RecursiveGaussianImageFilter<InputImageType, RealImageType>;

  /**  Pointer to a gaussian filter.  */
  using GaussianFilterPointer = typename GaussianFilterType::Pointer;

  /**  Pointer to a derivative filter.  */
  using DerivativeFilterPointer = typename DerivativeFilterType::Pointer;

  /**  Pointer to the Output Image */
  using OutputImagePointer = typename TOutputImage::Pointer;

  /** Type of the output Image */
  using OutputImageType = TOutputImage;
  using OutputPixelType = typename OutputImageType::PixelType;
  using OutputComponentType = typename NumericTraits<OutputPixelType>::ValueType;
  using CovariantVectorType = CovariantVector<OutputComponentType, ImageDimension>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(GradientRecursiveGaussianImageFilter);

  /** Set/Get the Sigma value. Sigma is measured in the units of image spacing. */
  void
  SetSigmaArray(const SigmaArrayType & sigma);
  void
  SetSigma(ScalarRealType sigma);

  SigmaArrayType
  GetSigmaArray() const;

  /** Get the value of Sigma along the first dimension. */
  ScalarRealType
  GetSigma() const;

  /** Define which normalization factor will be used for the Gaussian
   *  \sa  RecursiveGaussianImageFilter::SetNormalizeAcrossScale
   */
  void
  SetNormalizeAcrossScale(bool normalize);
  itkGetConstMacro(NormalizeAcrossScale, bool);

  /** GradientRecursiveGaussianImageFilter needs all of the input to produce an
   * output. Therefore, GradientRecursiveGaussianImageFilter needs to provide
   * an implementation for GenerateInputRequestedRegion in order to inform
   * the pipeline execution model.
   * \sa ImageToImageFilter::GenerateInputRequestedRegion() */
  void
  GenerateInputRequestedRegion() override;

  /** The UseImageDirection flag determines whether the gradients are
   * computed with respect to the image grid or with respect to the physical
   * space. When this flag is ON the gradients are computed with respect to
   * the coordinate system of physical space. The difference is whether we take
   * into account the image Direction or not. The flag ON will take into
   * account the image direction and will result in an extra matrix
   * multiplication compared to the amount of computation performed when the
   * flag is OFF.
   * The default value of this flag is On.
   */
  itkSetMacro(UseImageDirection, bool);
  itkGetConstMacro(UseImageDirection, bool);
  itkBooleanMacro(UseImageDirection);

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  // Does not seem to work with wrappings, disabled
  // itkConceptMacro( InputHasNumericTraitsCheck,
  //                 ( Concept::HasNumericTraits< PixelType > ) );
  // End concept checking
#endif

protected:
  GradientRecursiveGaussianImageFilter();
  ~GradientRecursiveGaussianImageFilter() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** Generate Data */
  void
  GenerateData() override;

  // Override since the filter produces the entire dataset
  void
  EnlargeOutputRequestedRegion(DataObject * output) override;

  void
  GenerateOutputInformation() override;

private:
  template <typename TValue>
  void
  TransformOutputPixel(ImageRegionIterator<VectorImage<TValue, ImageDimension>> & it)
  {
    // To transform Variable length vector we need to convert to and
    // fro the CovariantVectorType
    const CovariantVectorType gradient(it.Get().GetDataPointer());
    CovariantVectorType       physicalGradient;
    it.GetImage()->TransformLocalVectorToPhysicalVector(gradient, physicalGradient);
    it.Set(OutputPixelType(physicalGradient.GetDataPointer(), ImageDimension, false));
  }

  template <typename T>
  void
  TransformOutputPixel(ImageRegionIterator<T> & it)
  {
    OutputPixelType         correctedGradient{};
    const OutputPixelType & gradient = it.Get();

    const unsigned int nComponents = NumericTraits<OutputPixelType>::GetLength(gradient) / ImageDimension;

    for (unsigned int nc = 0; nc < nComponents; ++nc)
    {
      GradientVectorType componentGradient;
      GradientVectorType correctedComponentGradient;
      for (unsigned int dim = 0; dim < ImageDimension; ++dim)
      {
        componentGradient[dim] =
          DefaultConvertPixelTraits<OutputPixelType>::GetNthComponent(nc * ImageDimension + dim, gradient);
      }
      it.GetImage()->TransformLocalVectorToPhysicalVector(componentGradient, correctedComponentGradient);
      for (unsigned int dim = 0; dim < ImageDimension; ++dim)
      {
        DefaultConvertPixelTraits<OutputPixelType>::SetNthComponent(
          nc * ImageDimension + dim, correctedGradient, correctedComponentGradient[dim]);
      }
    }
    it.Set(correctedGradient);
  }

  template <template <typename, unsigned int> class P, class T, unsigned int VDimension>
  void
  TransformOutputPixel(ImageRegionIterator<Image<P<T, VDimension>, VDimension>> & it)
  {
    const OutputPixelType gradient = it.Get();
    // This uses the more efficient set by reference method
    it.GetImage()->TransformLocalVectorToPhysicalVector(gradient, it.Value());
  }


  std::vector<GaussianFilterPointer> m_SmoothingFilters{};
  DerivativeFilterPointer            m_DerivativeFilter{};
  OutputImageAdaptorPointer          m_ImageAdaptor{};

  /** Normalize the image across scale space */
  bool m_NormalizeAcrossScale{};

  /** Take into account image orientation when computing the Gradient */
  bool m_UseImageDirection{ true };

  /** Standard deviation of the gaussian */
  SigmaArrayType m_Sigma{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkGradientRecursiveGaussianImageFilter.hxx"
#endif

#endif