1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkGradientRecursiveGaussianImageFilter_h
#define itkGradientRecursiveGaussianImageFilter_h
#include "itkRecursiveGaussianImageFilter.h"
#include "itkNthElementImageAdaptor.h"
#include "itkImage.h"
#include "itkCovariantVector.h"
#include "itkDefaultConvertPixelTraits.h"
#include "itkProgressAccumulator.h"
#include "itkImageRegionIterator.h"
#include "itkVectorImage.h"
#include <vector>
namespace itk
{
/**
* \class GradientRecursiveGaussianImageFilter
* \brief Computes the gradient of an image by convolution
* with the first derivative of a Gaussian.
*
* This filter is implemented using the recursive gaussian
* filters.
*
* This filter supports both scalar and vector pixel types
* within the input image, including VectorImage type.
*
* \ingroup GradientFilters
* \ingroup SingleThreaded
* \ingroup ITKImageGradient
*
* \sphinx
* \sphinxexample{Filtering/ImageGradient/ApplyGradientRecursiveGaussianWithVectorInput,Apply
* GradientRecursiveGaussianImageFilter on Image with Vector type}
* \sphinxexample{Filtering/ImageGradient/ImplementationOfSnakes,Implementation Of Snakes}
* \endsphinx
*/
template <
typename TInputImage,
typename TOutputImage = Image<
CovariantVector<typename NumericTraits<typename TInputImage::PixelType>::RealType, TInputImage::ImageDimension>,
TInputImage::ImageDimension>>
class ITK_TEMPLATE_EXPORT GradientRecursiveGaussianImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(GradientRecursiveGaussianImageFilter);
/** Standard class type aliases. */
using Self = GradientRecursiveGaussianImageFilter;
using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Pixel Type of the input image. May be scalar or vector. */
using InputImageType = TInputImage;
using PixelType = typename TInputImage::PixelType;
using RealType = typename NumericTraits<PixelType>::RealType;
using ScalarRealType = typename NumericTraits<PixelType>::ScalarRealType;
/** Define the image type for internal computations
RealType is usually 'double' in NumericTraits.
Here we prefer float in order to save memory. */
using InternalRealType = typename NumericTraits<RealType>::FloatType;
using InternalScalarRealType = typename NumericTraits<InternalRealType>::ValueType;
/** Image dimension. */
static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;
/** Gradient vector type alias */
using GradientVectorType = CovariantVector<ScalarRealType, ImageDimension>;
/** Define the image type for internal computations
RealType is usually 'double' in NumericTraits.
Here we prefer float in order to save memory. */
using RealImageType = Image<InternalRealType, Self::ImageDimension>;
/** Output Image Nth Element Adaptor
* This adaptor allows to use conventional scalar
* smoothing filters to compute each one of the
* components of the gradient image pixels. */
using OutputImageAdaptorType = NthElementImageAdaptor<TOutputImage, InternalScalarRealType>;
using OutputImageAdaptorPointer = typename OutputImageAdaptorType::Pointer;
/** Define the type for the sigma array **/
using SigmaArrayType = FixedArray<ScalarRealType, Self::ImageDimension>;
/** Smoothing filter type */
using GaussianFilterType = RecursiveGaussianImageFilter<RealImageType, RealImageType>;
/** Derivative filter type, it will be the first in the pipeline */
using DerivativeFilterType = RecursiveGaussianImageFilter<InputImageType, RealImageType>;
/** Pointer to a gaussian filter. */
using GaussianFilterPointer = typename GaussianFilterType::Pointer;
/** Pointer to a derivative filter. */
using DerivativeFilterPointer = typename DerivativeFilterType::Pointer;
/** Pointer to the Output Image */
using OutputImagePointer = typename TOutputImage::Pointer;
/** Type of the output Image */
using OutputImageType = TOutputImage;
using OutputPixelType = typename OutputImageType::PixelType;
using OutputComponentType = typename NumericTraits<OutputPixelType>::ValueType;
using CovariantVectorType = CovariantVector<OutputComponentType, ImageDimension>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(GradientRecursiveGaussianImageFilter);
/** Set/Get the Sigma value. Sigma is measured in the units of image spacing. */
void
SetSigmaArray(const SigmaArrayType & sigma);
void
SetSigma(ScalarRealType sigma);
SigmaArrayType
GetSigmaArray() const;
/** Get the value of Sigma along the first dimension. */
ScalarRealType
GetSigma() const;
/** Define which normalization factor will be used for the Gaussian
* \sa RecursiveGaussianImageFilter::SetNormalizeAcrossScale
*/
void
SetNormalizeAcrossScale(bool normalize);
itkGetConstMacro(NormalizeAcrossScale, bool);
/** GradientRecursiveGaussianImageFilter needs all of the input to produce an
* output. Therefore, GradientRecursiveGaussianImageFilter needs to provide
* an implementation for GenerateInputRequestedRegion in order to inform
* the pipeline execution model.
* \sa ImageToImageFilter::GenerateInputRequestedRegion() */
void
GenerateInputRequestedRegion() override;
/** The UseImageDirection flag determines whether the gradients are
* computed with respect to the image grid or with respect to the physical
* space. When this flag is ON the gradients are computed with respect to
* the coordinate system of physical space. The difference is whether we take
* into account the image Direction or not. The flag ON will take into
* account the image direction and will result in an extra matrix
* multiplication compared to the amount of computation performed when the
* flag is OFF.
* The default value of this flag is On.
*/
itkSetMacro(UseImageDirection, bool);
itkGetConstMacro(UseImageDirection, bool);
itkBooleanMacro(UseImageDirection);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
// Does not seem to work with wrappings, disabled
// itkConceptMacro( InputHasNumericTraitsCheck,
// ( Concept::HasNumericTraits< PixelType > ) );
// End concept checking
#endif
protected:
GradientRecursiveGaussianImageFilter();
~GradientRecursiveGaussianImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Generate Data */
void
GenerateData() override;
// Override since the filter produces the entire dataset
void
EnlargeOutputRequestedRegion(DataObject * output) override;
void
GenerateOutputInformation() override;
private:
template <typename TValue>
void
TransformOutputPixel(ImageRegionIterator<VectorImage<TValue, ImageDimension>> & it)
{
// To transform Variable length vector we need to convert to and
// fro the CovariantVectorType
const CovariantVectorType gradient(it.Get().GetDataPointer());
CovariantVectorType physicalGradient;
it.GetImage()->TransformLocalVectorToPhysicalVector(gradient, physicalGradient);
it.Set(OutputPixelType(physicalGradient.GetDataPointer(), ImageDimension, false));
}
template <typename T>
void
TransformOutputPixel(ImageRegionIterator<T> & it)
{
OutputPixelType correctedGradient{};
const OutputPixelType & gradient = it.Get();
const unsigned int nComponents = NumericTraits<OutputPixelType>::GetLength(gradient) / ImageDimension;
for (unsigned int nc = 0; nc < nComponents; ++nc)
{
GradientVectorType componentGradient;
GradientVectorType correctedComponentGradient;
for (unsigned int dim = 0; dim < ImageDimension; ++dim)
{
componentGradient[dim] =
DefaultConvertPixelTraits<OutputPixelType>::GetNthComponent(nc * ImageDimension + dim, gradient);
}
it.GetImage()->TransformLocalVectorToPhysicalVector(componentGradient, correctedComponentGradient);
for (unsigned int dim = 0; dim < ImageDimension; ++dim)
{
DefaultConvertPixelTraits<OutputPixelType>::SetNthComponent(
nc * ImageDimension + dim, correctedGradient, correctedComponentGradient[dim]);
}
}
it.Set(correctedGradient);
}
template <template <typename, unsigned int> class P, class T, unsigned int VDimension>
void
TransformOutputPixel(ImageRegionIterator<Image<P<T, VDimension>, VDimension>> & it)
{
const OutputPixelType gradient = it.Get();
// This uses the more efficient set by reference method
it.GetImage()->TransformLocalVectorToPhysicalVector(gradient, it.Value());
}
std::vector<GaussianFilterPointer> m_SmoothingFilters{};
DerivativeFilterPointer m_DerivativeFilter{};
OutputImageAdaptorPointer m_ImageAdaptor{};
/** Normalize the image across scale space */
bool m_NormalizeAcrossScale{};
/** Take into account image orientation when computing the Gradient */
bool m_UseImageDirection{ true };
/** Standard deviation of the gaussian */
SigmaArrayType m_Sigma{};
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkGradientRecursiveGaussianImageFilter.hxx"
#endif
#endif
|