File: itkDifferenceOfGaussiansGradientTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (177 lines) | stat: -rw-r--r-- 5,858 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/


// Native ITK stuff
#include "itkSimpleFilterWatcher.h"

// Spatial function stuff
#include "itkSphereSpatialFunction.h"
#include "itkFloodFilledSpatialFunctionConditionalIterator.h"

// DOG gradient related stuff
#include "itkBinomialBlurImageFilter.h"
#include "itkDifferenceOfGaussiansGradientImageFilter.h"
#include "itkVectorMagnitudeImageFilter.h"

/*
This file tests:
  itkDifferenceOfGaussiansGradientImageFilter
*/

int
itkDifferenceOfGaussiansGradientTest(int, char *[])
{
  constexpr unsigned int dim = 3;

  // Image type alias
  using TImageType = itk::Image<unsigned char, dim>;

  //-----------------Create a new input image--------------------
  // Image size and spacing parameters
  TImageType::SizeValueType    sourceImageSize[] = { 20, 20, 20 };
  TImageType::SpacingValueType sourceImageSpacing[] = { 1.0, 1.0, 1.0 };
  TImageType::PointValueType   sourceImageOrigin[] = { 0, 0, 0 };

  // Creates the sourceImage (but doesn't set the size or allocate memory)
  auto sourceImage = TImageType::New();
  sourceImage->SetOrigin(sourceImageOrigin);
  sourceImage->SetSpacing(sourceImageSpacing);

  printf("New sourceImage created\n");

  //-----The following block allocates the sourceImage-----

  // Create a size object native to the sourceImage type
  TImageType::SizeType sourceImageSizeObject;
  // Set the size object to the array defined earlier
  sourceImageSizeObject.SetSize(sourceImageSize);
  // Create a region object native to the sourceImage type
  TImageType::RegionType largestPossibleRegion;
  // Resize the region
  largestPossibleRegion.SetSize(sourceImageSizeObject);
  // Set the largest legal region size (i.e. the size of the whole sourceImage), the buffered, and
  // the requested region to what we just defined.
  sourceImage->SetRegions(largestPossibleRegion);
  // Now allocate memory for the sourceImage
  sourceImage->Allocate();

  printf("New sourceImage allocated\n");

  // Initialize the image to hold all 0's
  itk::ImageRegionIterator<TImageType> it(sourceImage, largestPossibleRegion);

  for (it.GoToBegin(); !it.IsAtEnd(); ++it)
  {
    it.Set(0);
  }

  //---------Create and initialize a spatial function-----------

  using TFunctionType = itk::SphereSpatialFunction<dim>;
  using TFunctionPositionType = TFunctionType::InputType;

  // Create and initialize a new sphere function

  auto spatialFunc = TFunctionType::New();
  spatialFunc->SetRadius(5);

  TFunctionPositionType center;
  center[0] = 10;
  center[1] = 10;
  center[2] = 10;
  spatialFunc->SetCenter(center);

  printf("Sphere spatial function created\n");

  //---------Create and initialize a spatial function iterator-----------
  TImageType::IndexType            seedPos;
  const TImageType::IndexValueType pos[] = { 10, 10, 10 };
  seedPos.SetIndex(pos);

  using TItType = itk::FloodFilledSpatialFunctionConditionalIterator<TImageType, TFunctionType>;
  TItType sfi(sourceImage, spatialFunc, seedPos);

  //
  // show seed indices
  std::cout << "Seeds for FloodFilledSpatialFunctionConditionalIterator" << std::endl;
  for (const auto & seed : sfi.GetSeeds())
  {
    std::cout << seed << ' ';
  }
  std::cout << std::endl;

  // Iterate through the entire image and set interior pixels to 255
  for (; !(sfi.IsAtEnd()); ++sfi)
  {
    sfi.Set(255);
  }

  std::cout << "Spatial function iterator created, sphere drawn" << std::endl;

  //--------------------Do blurring----------------
  using TOutputType = TImageType;

  // Create a binomial blur filter
  itk::BinomialBlurImageFilter<TImageType, TOutputType>::Pointer binfilter;
  binfilter = itk::BinomialBlurImageFilter<TImageType, TOutputType>::New();

  sourceImage->SetRequestedRegion(sourceImage->GetLargestPossibleRegion());

  // Set filter parameters
  binfilter->SetInput(sourceImage);
  binfilter->SetRepetitions(4);

  // Set up the output of the filter
  TImageType::Pointer blurredImage = binfilter->GetOutput();

  // Execute the filter
  binfilter->Update();
  std::cout << "Binomial blur filter updated" << std::endl;

  //------------Finally we can test the DOG filter------------

  // Create a differennce of gaussians gradient filter
  using TDOGFilterType = itk::DifferenceOfGaussiansGradientImageFilter<TOutputType, double>;
  auto                     DOGFilter = TDOGFilterType::New();
  itk::SimpleFilterWatcher watcher(DOGFilter);

  // We're filtering the output of the binomial filter
  DOGFilter->SetInput(blurredImage);

  // Test the get/set macro for width
  DOGFilter->SetWidth(4);
  unsigned int theWidth = DOGFilter->GetWidth();
  std::cout << "DOGFilter->GetWidth(): " << theWidth << std::endl;

  // Get the output of the gradient filter
  TDOGFilterType::TOutputImage::Pointer gradientImage = DOGFilter->GetOutput();

  // Go!
  DOGFilter->Update();

  //-------------Test vector magnitude-------------
  using VectorMagType = itk::VectorMagnitudeImageFilter<TDOGFilterType::TOutputImage, itk::Image<unsigned char, dim>>;

  auto vectorMagFilter = VectorMagType::New();

  vectorMagFilter->SetInput(gradientImage);
  vectorMagFilter->Update();

  return EXIT_SUCCESS;
}