1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Native ITK stuff
#include "itkSimpleFilterWatcher.h"
// Spatial function stuff
#include "itkSphereSpatialFunction.h"
#include "itkFloodFilledSpatialFunctionConditionalIterator.h"
// DOG gradient related stuff
#include "itkBinomialBlurImageFilter.h"
#include "itkDifferenceOfGaussiansGradientImageFilter.h"
#include "itkVectorMagnitudeImageFilter.h"
/*
This file tests:
itkDifferenceOfGaussiansGradientImageFilter
*/
int
itkDifferenceOfGaussiansGradientTest(int, char *[])
{
constexpr unsigned int dim = 3;
// Image type alias
using TImageType = itk::Image<unsigned char, dim>;
//-----------------Create a new input image--------------------
// Image size and spacing parameters
TImageType::SizeValueType sourceImageSize[] = { 20, 20, 20 };
TImageType::SpacingValueType sourceImageSpacing[] = { 1.0, 1.0, 1.0 };
TImageType::PointValueType sourceImageOrigin[] = { 0, 0, 0 };
// Creates the sourceImage (but doesn't set the size or allocate memory)
auto sourceImage = TImageType::New();
sourceImage->SetOrigin(sourceImageOrigin);
sourceImage->SetSpacing(sourceImageSpacing);
printf("New sourceImage created\n");
//-----The following block allocates the sourceImage-----
// Create a size object native to the sourceImage type
TImageType::SizeType sourceImageSizeObject;
// Set the size object to the array defined earlier
sourceImageSizeObject.SetSize(sourceImageSize);
// Create a region object native to the sourceImage type
TImageType::RegionType largestPossibleRegion;
// Resize the region
largestPossibleRegion.SetSize(sourceImageSizeObject);
// Set the largest legal region size (i.e. the size of the whole sourceImage), the buffered, and
// the requested region to what we just defined.
sourceImage->SetRegions(largestPossibleRegion);
// Now allocate memory for the sourceImage
sourceImage->Allocate();
printf("New sourceImage allocated\n");
// Initialize the image to hold all 0's
itk::ImageRegionIterator<TImageType> it(sourceImage, largestPossibleRegion);
for (it.GoToBegin(); !it.IsAtEnd(); ++it)
{
it.Set(0);
}
//---------Create and initialize a spatial function-----------
using TFunctionType = itk::SphereSpatialFunction<dim>;
using TFunctionPositionType = TFunctionType::InputType;
// Create and initialize a new sphere function
auto spatialFunc = TFunctionType::New();
spatialFunc->SetRadius(5);
TFunctionPositionType center;
center[0] = 10;
center[1] = 10;
center[2] = 10;
spatialFunc->SetCenter(center);
printf("Sphere spatial function created\n");
//---------Create and initialize a spatial function iterator-----------
TImageType::IndexType seedPos;
const TImageType::IndexValueType pos[] = { 10, 10, 10 };
seedPos.SetIndex(pos);
using TItType = itk::FloodFilledSpatialFunctionConditionalIterator<TImageType, TFunctionType>;
TItType sfi(sourceImage, spatialFunc, seedPos);
//
// show seed indices
std::cout << "Seeds for FloodFilledSpatialFunctionConditionalIterator" << std::endl;
for (const auto & seed : sfi.GetSeeds())
{
std::cout << seed << ' ';
}
std::cout << std::endl;
// Iterate through the entire image and set interior pixels to 255
for (; !(sfi.IsAtEnd()); ++sfi)
{
sfi.Set(255);
}
std::cout << "Spatial function iterator created, sphere drawn" << std::endl;
//--------------------Do blurring----------------
using TOutputType = TImageType;
// Create a binomial blur filter
itk::BinomialBlurImageFilter<TImageType, TOutputType>::Pointer binfilter;
binfilter = itk::BinomialBlurImageFilter<TImageType, TOutputType>::New();
sourceImage->SetRequestedRegion(sourceImage->GetLargestPossibleRegion());
// Set filter parameters
binfilter->SetInput(sourceImage);
binfilter->SetRepetitions(4);
// Set up the output of the filter
TImageType::Pointer blurredImage = binfilter->GetOutput();
// Execute the filter
binfilter->Update();
std::cout << "Binomial blur filter updated" << std::endl;
//------------Finally we can test the DOG filter------------
// Create a differennce of gaussians gradient filter
using TDOGFilterType = itk::DifferenceOfGaussiansGradientImageFilter<TOutputType, double>;
auto DOGFilter = TDOGFilterType::New();
itk::SimpleFilterWatcher watcher(DOGFilter);
// We're filtering the output of the binomial filter
DOGFilter->SetInput(blurredImage);
// Test the get/set macro for width
DOGFilter->SetWidth(4);
unsigned int theWidth = DOGFilter->GetWidth();
std::cout << "DOGFilter->GetWidth(): " << theWidth << std::endl;
// Get the output of the gradient filter
TDOGFilterType::TOutputImage::Pointer gradientImage = DOGFilter->GetOutput();
// Go!
DOGFilter->Update();
//-------------Test vector magnitude-------------
using VectorMagType = itk::VectorMagnitudeImageFilter<TDOGFilterType::TOutputImage, itk::Image<unsigned char, dim>>;
auto vectorMagFilter = VectorMagType::New();
vectorMagFilter->SetInput(gradientImage);
vectorMagFilter->Update();
return EXIT_SUCCESS;
}
|