1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
#include "itkSimpleFilterWatcher.h"
#include "itkTestingMacros.h"
template <typename TImage1Type, typename TImage2Type>
class ImageInformationIsEqual
{
public:
static bool
Check(const TImage1Type * image1, const TImage2Type * image2)
{
if (image1->GetSpacing() != image2->GetSpacing())
{
return false;
}
if (image1->GetOrigin() != image2->GetOrigin())
{
return false;
}
if (image1->GetDirection() != image2->GetDirection())
{
return false;
}
return true;
}
};
int
itkGradientMagnitudeRecursiveGaussianFilterTest(int argc, char * argv[])
{
if (argc != 3)
{
std::cerr << "Missing parameters." << std::endl;
std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv) << " sigma normalizeAcrossScale" << std::endl;
return EXIT_FAILURE;
}
constexpr unsigned int myDimension = 3;
using myImageType = itk::Image<float, myDimension>;
using myIndexType = itk::Index<myDimension>;
using mySizeType = itk::Size<myDimension>;
using myRegionType = itk::ImageRegion<myDimension>;
auto inputImage = myImageType::New();
mySizeType size;
size.Fill(8);
myIndexType start;
start.Fill(0);
myRegionType region{ start, size };
inputImage->SetRegions(region);
inputImage->AllocateInitialized();
// Set the metadata for the image
myImageType::PointType origin;
myImageType::SpacingType spacing;
myImageType::DirectionType direction;
origin[0] = 1.0;
origin[1] = 2.0;
origin[2] = 3.0;
spacing[0] = .1;
spacing[1] = .2;
spacing[2] = .3;
direction.SetIdentity();
direction(1, 1) = -1.0;
inputImage->SetSpacing(spacing);
inputImage->SetOrigin(origin);
inputImage->SetDirection(direction);
// Declare Iterator type for the input image
using myIteratorType = itk::ImageRegionIteratorWithIndex<myImageType>;
size.Fill(4);
start.Fill(2);
// Create one iterator for an internal region
region.SetSize(size);
region.SetIndex(start);
myIteratorType itb(inputImage, region);
// Initialize the content the internal region
while (!itb.IsAtEnd())
{
itb.Set(100.0);
++itb;
}
using myFilterType = itk::GradientMagnitudeRecursiveGaussianImageFilter<myImageType>;
using myGradientImageType = myFilterType::OutputImageType;
auto filter = myFilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, GradientMagnitudeRecursiveGaussianImageFilter, InPlaceImageFilter);
itk::SimpleFilterWatcher watcher(filter);
auto sigma = static_cast<typename myFilterType::RealType>(std::stod(argv[1]));
filter->SetSigma(sigma);
ITK_TEST_SET_GET_VALUE(sigma, filter->GetSigma());
auto normalizeAcrossScale = static_cast<bool>(std::stoi(argv[2]));
ITK_TEST_SET_GET_BOOLEAN(filter, NormalizeAcrossScale, normalizeAcrossScale);
filter->SetInput(inputImage);
// Execute the filter
ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());
// Get the Smart Pointer to the Filter Output
// It is important to do it AFTER the filter is Updated
// Because the object connected to the output may be changed
// by another during GenerateData() call
myGradientImageType::Pointer outputImage = filter->GetOutput();
#ifndef NDEBUG
using myOutputIteratorType = itk::ImageRegionIteratorWithIndex<myGradientImageType>;
// Create an iterator for going through the output image
myOutputIteratorType itg(outputImage, outputImage->GetRequestedRegion());
// Print the content of the result image
std::cout << " Result " << std::endl;
itg.GoToBegin();
while (!itg.IsAtEnd())
{
std::cout << itg.Get() << std::endl;
++itg;
}
#endif
if (!ImageInformationIsEqual<myImageType, myImageType>::Check(inputImage, outputImage))
{
std::cout << "ImageInformation mismatch!" << std::endl;
std::cout << "inputImage Origin: " << inputImage->GetOrigin() << std::endl;
std::cout << "outputImage Origin: " << outputImage->GetOrigin() << std::endl;
std::cout << "inputImage Spacing: " << inputImage->GetSpacing() << std::endl;
std::cout << "outputImage Spacing: " << outputImage->GetSpacing() << std::endl;
std::cout << "inputImage Direction: " << inputImage->GetDirection() << std::endl;
std::cout << "outputImage Direction: " << outputImage->GetDirection() << std::endl;
return EXIT_FAILURE;
}
// check that the same filter is able to run on a smaller image
size.Fill(5);
region.SetSize(size);
inputImage->SetRegions(region);
inputImage->Allocate();
inputImage->FillBuffer(1);
// Execute the filter
ITK_TRY_EXPECT_NO_EXCEPTION(filter->UpdateLargestPossibleRegion());
// All objects should be automatically destroyed at this point
std::cout << std::endl << "Test PASSED ! " << std::endl;
return EXIT_SUCCESS;
}
|