File: itkGradientMagnitudeRecursiveGaussianFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (183 lines) | stat: -rw-r--r-- 5,562 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
#include "itkSimpleFilterWatcher.h"
#include "itkTestingMacros.h"

template <typename TImage1Type, typename TImage2Type>
class ImageInformationIsEqual
{
public:
  static bool
  Check(const TImage1Type * image1, const TImage2Type * image2)
  {
    if (image1->GetSpacing() != image2->GetSpacing())
    {
      return false;
    }
    if (image1->GetOrigin() != image2->GetOrigin())
    {
      return false;
    }
    if (image1->GetDirection() != image2->GetDirection())
    {
      return false;
    }
    return true;
  }
};

int
itkGradientMagnitudeRecursiveGaussianFilterTest(int argc, char * argv[])
{
  if (argc != 3)
  {
    std::cerr << "Missing parameters." << std::endl;
    std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv) << " sigma normalizeAcrossScale" << std::endl;
    return EXIT_FAILURE;
  }

  constexpr unsigned int myDimension = 3;
  using myImageType = itk::Image<float, myDimension>;
  using myIndexType = itk::Index<myDimension>;
  using mySizeType = itk::Size<myDimension>;
  using myRegionType = itk::ImageRegion<myDimension>;

  auto inputImage = myImageType::New();

  mySizeType size;
  size.Fill(8);

  myIndexType start;
  start.Fill(0);

  myRegionType region{ start, size };

  inputImage->SetRegions(region);
  inputImage->AllocateInitialized();

  // Set the metadata for the image
  myImageType::PointType     origin;
  myImageType::SpacingType   spacing;
  myImageType::DirectionType direction;

  origin[0] = 1.0;
  origin[1] = 2.0;
  origin[2] = 3.0;
  spacing[0] = .1;
  spacing[1] = .2;
  spacing[2] = .3;
  direction.SetIdentity();
  direction(1, 1) = -1.0;

  inputImage->SetSpacing(spacing);
  inputImage->SetOrigin(origin);
  inputImage->SetDirection(direction);

  // Declare Iterator type for the input image
  using myIteratorType = itk::ImageRegionIteratorWithIndex<myImageType>;

  size.Fill(4);
  start.Fill(2);

  // Create one iterator for an internal region
  region.SetSize(size);
  region.SetIndex(start);
  myIteratorType itb(inputImage, region);

  // Initialize the content the internal region
  while (!itb.IsAtEnd())
  {
    itb.Set(100.0);
    ++itb;
  }

  using myFilterType = itk::GradientMagnitudeRecursiveGaussianImageFilter<myImageType>;
  using myGradientImageType = myFilterType::OutputImageType;


  auto filter = myFilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, GradientMagnitudeRecursiveGaussianImageFilter, InPlaceImageFilter);


  itk::SimpleFilterWatcher watcher(filter);

  auto sigma = static_cast<typename myFilterType::RealType>(std::stod(argv[1]));
  filter->SetSigma(sigma);
  ITK_TEST_SET_GET_VALUE(sigma, filter->GetSigma());

  auto normalizeAcrossScale = static_cast<bool>(std::stoi(argv[2]));
  ITK_TEST_SET_GET_BOOLEAN(filter, NormalizeAcrossScale, normalizeAcrossScale);

  filter->SetInput(inputImage);

  // Execute the filter
  ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());


  // Get the Smart Pointer to the Filter Output
  // It is important to do it AFTER the filter is Updated
  // Because the object connected to the output may be changed
  // by another during GenerateData() call
  myGradientImageType::Pointer outputImage = filter->GetOutput();

#ifndef NDEBUG
  using myOutputIteratorType = itk::ImageRegionIteratorWithIndex<myGradientImageType>;

  // Create an iterator for going through the output image
  myOutputIteratorType itg(outputImage, outputImage->GetRequestedRegion());

  // Print the content of the result image
  std::cout << " Result " << std::endl;
  itg.GoToBegin();
  while (!itg.IsAtEnd())
  {
    std::cout << itg.Get() << std::endl;
    ++itg;
  }
#endif

  if (!ImageInformationIsEqual<myImageType, myImageType>::Check(inputImage, outputImage))
  {
    std::cout << "ImageInformation mismatch!" << std::endl;
    std::cout << "inputImage Origin:  " << inputImage->GetOrigin() << std::endl;
    std::cout << "outputImage Origin: " << outputImage->GetOrigin() << std::endl;
    std::cout << "inputImage Spacing:  " << inputImage->GetSpacing() << std::endl;
    std::cout << "outputImage Spacing: " << outputImage->GetSpacing() << std::endl;
    std::cout << "inputImage Direction:  " << inputImage->GetDirection() << std::endl;
    std::cout << "outputImage Direction: " << outputImage->GetDirection() << std::endl;
    return EXIT_FAILURE;
  }

  // check that the same filter is able to run on a smaller image
  size.Fill(5);
  region.SetSize(size);

  inputImage->SetRegions(region);
  inputImage->Allocate();
  inputImage->FillBuffer(1);

  // Execute the filter
  ITK_TRY_EXPECT_NO_EXCEPTION(filter->UpdateLargestPossibleRegion());

  // All objects should be automatically destroyed at this point
  std::cout << std::endl << "Test PASSED ! " << std::endl;
  return EXIT_SUCCESS;
}