1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Test the filter with 1-D images.
#include "itkGradientRecursiveGaussianImageFilter.h"
int
itkGradientRecursiveGaussianFilterTest2(int, char *[])
{
// Define the dimension of the images
constexpr unsigned int myDimension = 1;
// Declare the types of the images
using myImageType = itk::Image<float, myDimension>;
// Declare the type of the index to access images
using myIndexType = itk::Index<myDimension>;
// Declare the type of the size
using mySizeType = itk::Size<myDimension>;
// Declare the type of the Region
using myRegionType = itk::ImageRegion<myDimension>;
// Create the image
auto inputImage = myImageType::New();
// Define their size, and start index
mySizeType size;
size[0] = 64;
myIndexType start;
start.Fill(0);
myRegionType region{ start, size };
// Initialize Image A
inputImage->SetRegions(region);
inputImage->Allocate();
// Declare Iterator type for the input image
using myIteratorType = itk::ImageRegionIteratorWithIndex<myImageType>;
// Create one iterator for the Input Image A (this is a light object)
myIteratorType it(inputImage, inputImage->GetRequestedRegion());
// Initialize the content of Image A
while (!it.IsAtEnd())
{
it.Set(0.0);
++it;
}
size[0] = 32;
start[0] = 16;
// Create one iterator for an internal region
region.SetSize(size);
region.SetIndex(start);
myIteratorType itb(inputImage, region);
// Initialize the content the internal region
while (!itb.IsAtEnd())
{
itb.Set(100.0);
++itb;
}
// Declare the type for the
using myFilterType = itk::GradientRecursiveGaussianImageFilter<myImageType>;
using myGradientImageType = myFilterType::OutputImageType;
// Create a Filter
auto filter = myFilterType::New();
// Connect the input images
filter->SetInput(inputImage);
// Select the value of Sigma
filter->SetSigma(2.5);
// Execute the filter
filter->Update();
// Get the Smart Pointer to the Filter Output
// It is important to do it AFTER the filter is Updated
// Because the object connected to the output may be changed
// by another during GenerateData() call
myGradientImageType::Pointer outputImage = filter->GetOutput();
// Declare Iterator type for the output image
using myOutputIteratorType = itk::ImageRegionIteratorWithIndex<myGradientImageType>;
// Create an iterator for going through the output image
myOutputIteratorType itg(outputImage, outputImage->GetRequestedRegion());
// All objects should be automatically destroyed at this point
return EXIT_SUCCESS;
}
|