1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkGradientRecursiveGaussianImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkMath.h"
int
itkGradientRecursiveGaussianFilterTest4(int argc, char * argv[])
{
if (argc != 3)
{
std::cerr << "Missing Parameters!" << std::endl;
std::cerr << " inputImageFile outputImageFile" << std::endl;
return EXIT_FAILURE;
}
std::string inFileName = argv[1];
std::string outFileName = argv[2];
// Define the dimension of the images
constexpr unsigned int myDimension = 2;
// Declare the types of the images
using FloatType = float;
using DoubleType = double;
using myImageType = itk::Image<FloatType, myDimension>;
using myGradientImageType = itk::VectorImage<FloatType, myDimension>;
// Create the image
auto inputImage = myImageType::New();
using myReaderType = itk::ImageFileReader<myImageType>;
auto reader = myReaderType::New();
reader->SetFileName(inFileName);
// Declare the type for the
using myFilterType = itk::GradientRecursiveGaussianImageFilter<myImageType, myGradientImageType>;
// Create a Filter
auto filter = myFilterType::New();
// Connect the input images
filter->SetInput(reader->GetOutput());
// Select the value of Sigma
filter->SetSigma(2.5);
using myWriterType = itk::ImageFileWriter<myGradientImageType>;
auto writer = myWriterType::New();
writer->SetInput(filter->GetOutput());
writer->SetFileName(outFileName);
writer->Update();
// Test also that setting and getting sigma arrays is working
itk::FixedArray<DoubleType, 2> sigmas;
if (filter->GetSigma() != 2.5)
{
std::cerr << "Exception detected: wrong sigma after SetSigma" << std::endl;
std::cerr << "Sigma is: " << filter->GetSigma() << ", expected 2.5" << std::endl;
return EXIT_FAILURE;
}
sigmas = filter->GetSigmaArray();
if (sigmas[0] != 2.5 || sigmas[1] != 2.5)
{
std::cerr << "Exception detected: wrong sigma array after SetSigma" << std::endl;
std::cerr << "Sigma Array: " << sigmas[0] << ", " << sigmas[1] << std::endl;
std::cerr << "Expected: 2.5, 2.5" << std::endl;
return EXIT_FAILURE;
}
// Set new values
sigmas[0] = 1.8;
sigmas[1] = 1.8;
filter->SetSigmaArray(sigmas);
sigmas = filter->GetSigmaArray();
if (itk::Math::NotExactlyEquals(sigmas[0], 1.8) || itk::Math::NotExactlyEquals(sigmas[1], 1.8) ||
itk::Math::NotExactlyEquals(filter->GetSigma(), 1.8))
{
std::cerr << "Exception detected: wrong sigmas after SetSigmaArray" << std::endl;
std::cerr << "Sigma Array: " << sigmas[0] << ", " << sigmas[1] << std::endl;
std::cerr << "Sigma: " << filter->GetSigma() << std::endl;
return EXIT_FAILURE;
}
// All objects should be automatically destroyed at this point
return EXIT_SUCCESS;
}
|