1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkResampleImageFilter_hxx
#define itkResampleImageFilter_hxx
#include "itkObjectFactory.h"
#include "itkIdentityTransform.h"
#include "itkTotalProgressReporter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageScanlineIterator.h"
#include "itkSpecialCoordinatesImage.h"
#include "itkDefaultConvertPixelTraits.h"
#include "itkImageAlgorithm.h"
#include <algorithm> // For max.
#include <type_traits> // For is_same.
namespace itk
{
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
ResampleImageFilter()
: m_Extrapolator(nullptr)
, m_OutputSpacing(MakeFilled<SpacingType>(1.0))
, m_OutputOrigin()
{
m_Size.Fill(0);
m_OutputStartIndex.Fill(0);
m_OutputDirection.SetIdentity();
// Pipeline input configuration
// implicit:
// #0 "Primary" required
// #1 "ReferenceImage" optional
Self::AddRequiredInputName("ReferenceImage", 1);
Self::RemoveRequiredInputName("ReferenceImage");
// "Transform" required ( not numbered )
Self::AddRequiredInputName("Transform");
this->InitializeTransform();
m_Interpolator = dynamic_cast<InterpolatorType *>(LinearInterpolatorType::New().GetPointer());
m_DefaultPixelValue = NumericTraits<PixelType>::ZeroValue(m_DefaultPixelValue);
this->DynamicMultiThreadingOn();
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
void
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
InitializeTransform()
{
using IdentityTransformType =
Transform<TTransformPrecisionType, Self::OutputImageDimension, Self::OutputImageDimension>;
typename IdentityTransformType::Pointer defaultTransform =
IdentityTransform<TTransformPrecisionType, OutputImageDimension>::New();
if (InputImageDimension == OutputImageDimension)
{
using DecoratorType = DataObjectDecorator<IdentityTransformType>;
auto decoratedInput = DecoratorType::New();
decoratedInput->Set(defaultTransform);
this->ProcessObject::SetInput(
"Transform", const_cast<DataObjectDecorator<IdentityTransformType> *>(decoratedInput.GetPointer()));
}
else
{
// Initialize with rectangular identity?
}
this->Modified();
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
void
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
VerifyPreconditions() ITKv5_CONST
{
this->Superclass::VerifyPreconditions();
const ReferenceImageBaseType * const referenceImage = this->GetReferenceImage();
if (this->m_Size[0] == 0 && referenceImage && !m_UseReferenceImage)
{
itkExceptionMacro("Output image size is zero in all dimensions. Consider using UseReferenceImageOn()."
"or SetUseReferenceImage(true) to define the resample output from the ReferenceImage.");
}
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
void
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::SetOutputSpacing(
const double * spacing)
{
SpacingType s;
for (unsigned int i = 0; i < TOutputImage::ImageDimension; ++i)
{
s[i] = static_cast<typename SpacingType::ValueType>(spacing[i]);
}
this->SetOutputSpacing(s);
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
void
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::SetOutputOrigin(
const double * origin)
{
this->SetOutputOrigin(OriginPointType(origin));
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
void
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
SetOutputParametersFromImage(const ImageBaseType * image)
{
this->SetOutputOrigin(image->GetOrigin());
this->SetOutputSpacing(image->GetSpacing());
this->SetOutputDirection(image->GetDirection());
this->SetOutputStartIndex(image->GetLargestPossibleRegion().GetIndex());
this->SetSize(image->GetLargestPossibleRegion().GetSize());
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
void
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
BeforeThreadedGenerateData()
{
m_Interpolator->SetInputImage(this->GetInput());
// Connect input image to extrapolator
if (!m_Extrapolator.IsNull())
{
m_Extrapolator->SetInputImage(this->GetInput());
}
unsigned int nComponents = DefaultConvertPixelTraits<PixelType>::GetNumberOfComponents(m_DefaultPixelValue);
if (nComponents == 0)
{
PixelComponentType tempZeroComponents{ 0 };
PixelComponentType zeroComponent = NumericTraits<PixelComponentType>::ZeroValue(tempZeroComponents);
nComponents = this->GetInput()->GetNumberOfComponentsPerPixel();
NumericTraits<PixelType>::SetLength(m_DefaultPixelValue, nComponents);
for (unsigned int n = 0; n < nComponents; ++n)
{
PixelConvertType::SetNthComponent(n, m_DefaultPixelValue, zeroComponent);
}
}
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
void
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
AfterThreadedGenerateData()
{
// Disconnect input image from the interpolator
m_Interpolator->SetInputImage(nullptr);
if (!m_Extrapolator.IsNull())
{
// Disconnect input image from the extrapolator
m_Extrapolator->SetInputImage(nullptr);
}
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
void
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
DynamicThreadedGenerateData(const OutputImageRegionType & outputRegionForThread)
{
// Check whether the input or the output is a
// SpecialCoordinatesImage. If either are, then we cannot use the
// fast path since index mapping will definitely not be linear.
using OutputSpecialCoordinatesImageType = SpecialCoordinatesImage<PixelType, OutputImageDimension>;
using InputSpecialCoordinatesImageType = SpecialCoordinatesImage<InputPixelType, InputImageDimension>;
if (outputRegionForThread.GetNumberOfPixels() == 0)
{
return;
}
const bool isSpecialCoordinatesImage =
((dynamic_cast<const InputSpecialCoordinatesImageType *>(this->GetInput()) != nullptr) ||
(dynamic_cast<const OutputSpecialCoordinatesImageType *>(this->GetOutput()) != nullptr));
// Check whether we can use a fast path for resampling. Fast path
// can be used if the transformation is linear. Transform respond
// to the IsLinear() call.
if (!isSpecialCoordinatesImage &&
this->GetTransform()->GetTransformCategory() == TransformType::TransformCategoryEnum::Linear)
{
this->LinearThreadedGenerateData(outputRegionForThread);
return;
}
// Otherwise, we use the normal method where the transform is called
// for computing the transformation of every point.
this->NonlinearThreadedGenerateData(outputRegionForThread);
}
#ifndef ITK_LEGACY_REMOVE
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
typename ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::PixelType
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
CastPixelWithBoundsChecking(const InterpolatorOutputType value,
const ComponentType minComponent,
const ComponentType maxComponent) const
{
const unsigned int nComponents = InterpolatorConvertType::GetNumberOfComponents(value);
PixelType outputValue;
NumericTraits<PixelType>::SetLength(outputValue, nComponents);
for (unsigned int n = 0; n < nComponents; ++n)
{
ComponentType component = InterpolatorConvertType::GetNthComponent(n, value);
if (component < minComponent)
{
PixelConvertType::SetNthComponent(n, outputValue, static_cast<PixelComponentType>(minComponent));
}
else if (component > maxComponent)
{
PixelConvertType::SetNthComponent(n, outputValue, static_cast<PixelComponentType>(maxComponent));
}
else
{
PixelConvertType::SetNthComponent(n, outputValue, static_cast<PixelComponentType>(component));
}
}
return outputValue;
}
#endif // ITK_LEGACY_REMOVE
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
auto
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
CastComponentWithBoundsChecking(const PixelComponentType value) -> PixelComponentType
{
// Just return the argument. In this case, there is no need to cast or clamp its value.
return value;
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
template <typename TComponent>
auto
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
CastComponentWithBoundsChecking(const TComponent value) -> PixelComponentType
{
static_assert(std::is_same_v<TComponent, ComponentType>, "TComponent should just be the same as the ComponentType!");
static_assert(!std::is_same_v<TComponent, PixelComponentType>,
"For PixelComponentType there is a more appropriate overload, that should be called instead!");
// Retrieve minimum and maximum values at compile-time:
constexpr auto minPixelComponent = NumericTraits<PixelComponentType>::NonpositiveMin();
constexpr auto maxPixelComponent = NumericTraits<PixelComponentType>::max();
constexpr auto minComponent = static_cast<ComponentType>(minPixelComponent);
constexpr auto maxComponent = static_cast<ComponentType>(maxPixelComponent);
// Clamp the value between minPixelComponent and maxPixelComponent:
return (value <= minComponent) ? minPixelComponent
: (value >= maxComponent) ? maxPixelComponent : static_cast<PixelComponentType>(value);
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
auto
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
CastPixelWithBoundsChecking(const ComponentType value) -> PixelType
{
return CastComponentWithBoundsChecking(value);
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
template <typename TPixel>
auto
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
CastPixelWithBoundsChecking(const TPixel value) -> PixelType
{
static_assert(std::is_same_v<TPixel, InterpolatorOutputType>,
"TPixel should just be the same as the InterpolatorOutputType!");
static_assert(!std::is_same_v<TPixel, ComponentType>,
"For ComponentType there is a more efficient overload, that should be called instead!");
const unsigned int nComponents = InterpolatorConvertType::GetNumberOfComponents(value);
PixelType outputValue;
NumericTraits<PixelType>::SetLength(outputValue, nComponents);
for (unsigned int n = 0; n < nComponents; ++n)
{
const ComponentType component = InterpolatorConvertType::GetNthComponent(n, value);
PixelConvertType::SetNthComponent(n, outputValue, Self::CastComponentWithBoundsChecking(component));
}
return outputValue;
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
void
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
NonlinearThreadedGenerateData(const OutputImageRegionType & outputRegionForThread)
{
OutputImageType * outputPtr = this->GetOutput();
const InputImageType * inputPtr = this->GetInput();
const TransformType * transformPtr = this->GetTransform();
TotalProgressReporter progress(this, outputPtr->GetRequestedRegion().GetNumberOfPixels());
// Honor the SpecialCoordinatesImage isInside value returned
// by TransformPhysicalPointToContinuousIndex
using InputSpecialCoordinatesImageType = SpecialCoordinatesImage<InputPixelType, InputImageDimension>;
const bool isSpecialCoordinatesImage = (dynamic_cast<const InputSpecialCoordinatesImageType *>(inputPtr) != nullptr);
// Create an iterator that will walk the output region for this thread.
using OutputIterator = ImageRegionIteratorWithIndex<TOutputImage>;
using OutputType = typename InterpolatorType::OutputType;
// Walk the output region
for (OutputIterator outIt(outputPtr, outputRegionForThread); !outIt.IsAtEnd(); ++outIt)
{
// Determine the index of the current output pixel
OutputPointType outputPoint; // Coordinates of current output pixel
outputPtr->TransformIndexToPhysicalPoint(outIt.GetIndex(), outputPoint);
// Compute corresponding input pixel position
const InputPointType inputPoint = transformPtr->TransformPoint(outputPoint);
ContinuousInputIndexType inputIndex;
const bool isInsideInput = inputPtr->TransformPhysicalPointToContinuousIndex(inputPoint, inputIndex);
OutputType value;
// Evaluate input at right position and copy to the output
if (m_Interpolator->IsInsideBuffer(inputIndex) && (!isSpecialCoordinatesImage || isInsideInput))
{
value = m_Interpolator->EvaluateAtContinuousIndex(inputIndex);
outIt.Set(Self::CastPixelWithBoundsChecking(value));
}
else
{
if (m_Extrapolator.IsNull())
{
outIt.Set(m_DefaultPixelValue); // default background value
}
else
{
value = m_Extrapolator->EvaluateAtContinuousIndex(inputIndex);
outIt.Set(Self::CastPixelWithBoundsChecking(value));
}
}
progress.CompletedPixel();
}
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
void
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
LinearThreadedGenerateData(const OutputImageRegionType & outputRegionForThread)
{
OutputImageType * outputPtr = this->GetOutput();
const InputImageType * inputPtr = this->GetInput();
const TransformType * transformPtr = this->GetTransform();
TotalProgressReporter progress(this, outputPtr->GetRequestedRegion().GetNumberOfPixels());
const OutputImageRegionType & largestPossibleRegion = outputPtr->GetLargestPossibleRegion();
const auto firstIndexValueOfLargestPossibleRegion = largestPossibleRegion.GetIndex(0);
const auto firstSizeValueOfLargestPossibleRegion = static_cast<double>(largestPossibleRegion.GetSize(0));
// Cache information from the superclass
PixelType defaultValue = this->GetDefaultPixelValue();
// As we walk across a scan line in the output image, we trace
// an oriented/scaled/translated line in the input image. Each scan
// line has a starting and ending point. Since all transforms
// are linear, the path between the points is linear and can be
// defined by interpolating between the two points. By using
// interpolation we avoid accumulation errors, and by using the
// whole scan line from the largest possible region we make the
// computation independent for each point and independent of the
// region we are processing which makes the method independent of
// how the whole image is split for processing ( threading,
// streaming, etc ).
//
const auto transformIndex = [outputPtr, transformPtr, inputPtr](const IndexType & index) {
return inputPtr->template TransformPhysicalPointToContinuousIndex<TInterpolatorPrecisionType>(
transformPtr->TransformPoint(outputPtr->template TransformIndexToPhysicalPoint<double>(index)));
};
// Create an iterator that will walk the output region for this thread.
for (ImageScanlineIterator outIt(outputPtr, outputRegionForThread); !outIt.IsAtEnd(); outIt.NextLine())
{
// Determine the continuous index of the first and end pixel of output
// scan line when mapped to the input coordinate frame.
IndexType index = outIt.GetIndex();
index[0] = firstIndexValueOfLargestPossibleRegion;
const ContinuousInputIndexType startIndex = transformIndex(index);
index[0] += firstSizeValueOfLargestPossibleRegion;
const auto vectorFromStartIndex = transformIndex(index) - startIndex;
IndexValueType scanlineIndex = outIt.GetIndex()[0];
while (!outIt.IsAtEndOfLine())
{
// Perform linear interpolation from startIndex, along vectorFromStartIndex
const double alpha =
(scanlineIndex - firstIndexValueOfLargestPossibleRegion) / firstSizeValueOfLargestPossibleRegion;
ContinuousInputIndexType inputIndex(startIndex);
for (unsigned int i = 0; i < InputImageDimension; ++i)
{
inputIndex[i] += alpha * vectorFromStartIndex[i];
}
// Evaluate input at right position and copy to the output
if (m_Interpolator->IsInsideBuffer(inputIndex))
{
outIt.Set(Self::CastPixelWithBoundsChecking(m_Interpolator->EvaluateAtContinuousIndex(inputIndex)));
}
else
{
if (m_Extrapolator.IsNull())
{
outIt.Set(defaultValue); // default background value
}
else
{
outIt.Set(Self::CastPixelWithBoundsChecking(m_Extrapolator->EvaluateAtContinuousIndex(inputIndex)));
}
}
++outIt;
++scanlineIndex;
}
progress.Completed(outputRegionForThread.GetSize()[0]);
}
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
void
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
GenerateInputRequestedRegion()
{
if (!m_Interpolator)
{
itkExceptionMacro("Interpolator not set");
}
// Get pointers to the input and output
auto * input = const_cast<InputImageType *>(this->GetInput());
// Some interpolators need to look at their images in GetRadius()
m_Interpolator->SetInputImage(input);
// Check whether the input or the output is a
// SpecialCoordinatesImage. If either are, then we cannot use the
// fast path since index mapping will definitely not be linear.
using OutputSpecialCoordinatesImageType = SpecialCoordinatesImage<PixelType, OutputImageDimension>;
using InputSpecialCoordinatesImageType = SpecialCoordinatesImage<InputPixelType, InputImageDimension>;
const bool isSpecialCoordinatesImage =
((dynamic_cast<const InputSpecialCoordinatesImageType *>(this->GetInput()) != nullptr) ||
(dynamic_cast<const OutputSpecialCoordinatesImageType *>(this->GetOutput()) != nullptr));
const OutputImageType * output = this->GetOutput();
// Get the input transform
const TransformType * transform = this->GetTransform();
// Check whether we can use upstream streaming for resampling. Upstream streaming
// can be used if the transformation is linear. Transform respond
// to the IsLinear() call.
if (!isSpecialCoordinatesImage && transform->GetTransformCategory() == TransformType::TransformCategoryEnum::Linear)
{
typename TInputImage::RegionType inputRequestedRegion;
inputRequestedRegion = ImageAlgorithm::EnlargeRegionOverBox(output->GetRequestedRegion(), output, input, transform);
const typename TInputImage::RegionType inputLargestRegion(input->GetLargestPossibleRegion());
if (inputLargestRegion.IsInside(inputRequestedRegion.GetIndex()) ||
inputLargestRegion.IsInside(inputRequestedRegion.GetUpperIndex()))
{
// Input requested region is partially outside the largest possible region.
// or
// Input requested region is completely inside the largest possible region.
inputRequestedRegion.PadByRadius(m_Interpolator->GetRadius());
inputRequestedRegion.Crop(inputLargestRegion);
input->SetRequestedRegion(inputRequestedRegion);
}
else if (inputRequestedRegion.IsInside(inputLargestRegion))
{
// Input requested region completely surrounds the largest possible region.
input->SetRequestedRegion(inputLargestRegion);
}
else
{
// Input requested region is completely outside the largest possible region. Do not set the requested region in
// this case.
}
return;
}
// Otherwise, determining the actual input region is non-trivial, especially
// when we cannot assume anything about the transform being used.
// So we do the easy thing and request the entire input image.
//
input->SetRequestedRegionToLargestPossibleRegion();
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
void
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::
GenerateOutputInformation()
{
// Call the superclass' implementation of this method
if (InputImageDimension == OutputImageDimension)
{
Superclass::GenerateOutputInformation();
}
// Get pointers to the input and output
OutputImageType * outputPtr = this->GetOutput();
const ReferenceImageBaseType * const referenceImage = this->GetReferenceImage();
// Set the size of the output region
if (m_UseReferenceImage && referenceImage)
{
outputPtr->SetLargestPossibleRegion(referenceImage->GetLargestPossibleRegion());
}
else
{
const typename TOutputImage::RegionType outputLargestPossibleRegion(m_OutputStartIndex, m_Size);
outputPtr->SetLargestPossibleRegion(outputLargestPossibleRegion);
}
// Set spacing and origin
if (m_UseReferenceImage && referenceImage)
{
outputPtr->SetSpacing(referenceImage->GetSpacing());
outputPtr->SetOrigin(referenceImage->GetOrigin());
outputPtr->SetDirection(referenceImage->GetDirection());
}
else
{
outputPtr->SetSpacing(m_OutputSpacing);
outputPtr->SetOrigin(m_OutputOrigin);
outputPtr->SetDirection(m_OutputDirection);
}
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
ModifiedTimeType
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::GetMTime() const
{
ModifiedTimeType latestTime = Object::GetMTime();
if (m_Interpolator)
{
latestTime = std::max(latestTime, m_Interpolator->GetMTime());
}
return latestTime;
}
template <typename TInputImage,
typename TOutputImage,
typename TInterpolatorPrecisionType,
typename TTransformPrecisionType>
void
ResampleImageFilter<TInputImage, TOutputImage, TInterpolatorPrecisionType, TTransformPrecisionType>::PrintSelf(
std::ostream & os,
Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent
<< "DefaultPixelValue: " << static_cast<typename NumericTraits<PixelType>::PrintType>(m_DefaultPixelValue)
<< std::endl;
os << indent << "Size: " << m_Size << std::endl;
os << indent << "OutputStartIndex: " << m_OutputStartIndex << std::endl;
os << indent << "OutputSpacing: " << m_OutputSpacing << std::endl;
os << indent << "OutputOrigin: " << m_OutputOrigin << std::endl;
os << indent << "OutputDirection: " << m_OutputDirection << std::endl;
os << indent << "Transform: " << this->GetTransform() << std::endl;
os << indent << "Interpolator: " << m_Interpolator.GetPointer() << std::endl;
os << indent << "Extrapolator: " << m_Extrapolator.GetPointer() << std::endl;
os << indent << "UseReferenceImage: " << (m_UseReferenceImage ? "On" : "Off") << std::endl;
}
} // end namespace itk
#endif
|