File: itkBSplineScatteredDataPointSetToImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (172 lines) | stat: -rw-r--r-- 5,990 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkPointSet.h"
#include "itkBSplineScatteredDataPointSetToImageFilter.h"
#include "itkTestingMacros.h"

/**
 * In this test, we approximate a 2-D scalar field.
 * The scattered data is derived from a segmented
 * image. We write the output to an image for
 * comparison.
 */
int
itkBSplineScatteredDataPointSetToImageFilterTest(int argc, char * argv[])
{

  if (argc != 3)
  {
    std::cout << "Usage: " << itkNameOfTestExecutableMacro(argv) << " inputImage outputImage" << std::endl;
    return EXIT_FAILURE;
  }

  constexpr unsigned int ParametricDimension = 2;
  constexpr unsigned int DataDimension = 1;

  using PixelType = int;
  using InputImageType = itk::Image<PixelType, ParametricDimension>;
  using RealType = float;
  using VectorType = itk::Vector<RealType, DataDimension>;
  using VectorImageType = itk::Image<VectorType, ParametricDimension>;
  using PointSetType = itk::PointSet<VectorImageType::PixelType, ParametricDimension>;

  auto pointSet = PointSetType::New();

  using ReaderType = itk::ImageFileReader<InputImageType>;
  auto reader = ReaderType::New();
  reader->SetFileName(argv[1]);
  reader->Update();

  itk::ImageRegionIteratorWithIndex<InputImageType> It(reader->GetOutput(),
                                                       reader->GetOutput()->GetLargestPossibleRegion());

  // Iterate through the input image which consists of multivalued
  // foreground pixels (=nonzero) and background values (=zero).
  // The foreground pixels comprise the input point set.

  for (It.GoToBegin(); !It.IsAtEnd(); ++It)
  {
    if (It.Get() != PixelType{})
    {
      // We extract both the 2-D location of the point
      // and the pixel value of that point.

      PointSetType::PointType point;
      reader->GetOutput()->TransformIndexToPhysicalPoint(It.GetIndex(), point);

      unsigned long i = pointSet->GetNumberOfPoints();
      pointSet->SetPoint(i, point);

      auto V = itk::MakeFilled<PointSetType::PixelType>(DataDimension);
      V[0] = static_cast<RealType>(It.Get());
      pointSet->SetPointData(i, V);
    }
  }

  // Instantiate the B-spline filter and set the desired parameters.
  using FilterType = itk::BSplineScatteredDataPointSetToImageFilter<PointSetType, VectorImageType>;

  auto filter = FilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, BSplineScatteredDataPointSetToImageFilter, PointSetToImageFilter);


  unsigned int splineOrder = 0u;
  ITK_TRY_EXPECT_EXCEPTION(filter->SetSplineOrder(splineOrder));

  FilterType::ArrayType splineOrderArray;
  splineOrderArray.Fill(4u);
  filter->SetSplineOrder(splineOrderArray);
  ITK_TEST_SET_GET_VALUE(splineOrderArray, filter->GetSplineOrder());

  splineOrder = 3u;
  filter->SetSplineOrder(splineOrder);
  splineOrderArray.Fill(splineOrder);
  ITK_TEST_SET_GET_VALUE(splineOrderArray, filter->GetSplineOrder());


  unsigned int numberOfLevels = 0u;
  ITK_TRY_EXPECT_EXCEPTION(filter->SetNumberOfLevels(numberOfLevels));

  FilterType::ArrayType numberOfLevelsArray;
  numberOfLevelsArray.Fill(4u);
  filter->SetNumberOfLevels(numberOfLevelsArray);
  ITK_TEST_SET_GET_VALUE(numberOfLevelsArray, filter->GetNumberOfLevels());

  numberOfLevels = 3u;
  filter->SetNumberOfLevels(numberOfLevels);
  numberOfLevelsArray.Fill(numberOfLevels);
  ITK_TEST_SET_GET_VALUE(numberOfLevelsArray, filter->GetNumberOfLevels());


  FilterType::ArrayType ncps;
  ncps.Fill(4u);
  filter->SetNumberOfControlPoints(ncps);
  ITK_TEST_SET_GET_VALUE(ncps, filter->GetNumberOfControlPoints());


  FilterType::ArrayType close;
  close.Fill(0u);
  filter->SetCloseDimension(close);
  ITK_TEST_SET_GET_VALUE(close, filter->GetCloseDimension());


  // Define the parametric domain.
  filter->SetOrigin(reader->GetOutput()->GetOrigin());
  filter->SetSpacing(reader->GetOutput()->GetSpacing());
  filter->SetSize(reader->GetOutput()->GetLargestPossibleRegion().GetSize());
  filter->SetDirection(reader->GetOutput()->GetDirection());

  filter->SetInput(pointSet);

  ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());

  // Get the current number of control points to increase coverage
  std::cout << "Current number of control points: " << filter->GetCurrentNumberOfControlPoints() << std::endl;

  // Get the control point lattice produced by the fitting process to increase
  // coverage
  std::cout << "Control point lattice produced by the fitting process: " << std::endl;
  std::cout << filter->GetPhiLattice() << std::endl;

  VectorImageType * outputImage = filter->GetOutput();

  // Write the output to an image.
  using RealImageType = itk::Image<RealType, ParametricDimension>;
  auto image = RealImageType::New();
  image->SetRegions(reader->GetOutput()->GetLargestPossibleRegion());
  image->Allocate();
  itk::ImageRegionIteratorWithIndex<RealImageType> Itt(image, image->GetLargestPossibleRegion());

  for (Itt.GoToBegin(); !Itt.IsAtEnd(); ++Itt)
  {
    Itt.Set(outputImage->GetPixel(Itt.GetIndex())[0]);
  }

  using WriterType = itk::ImageFileWriter<RealImageType>;
  auto writer = WriterType::New();
  writer->SetInput(image);
  writer->SetFileName(argv[2]);

  ITK_TRY_EXPECT_NO_EXCEPTION(writer->Update());

  return EXIT_SUCCESS;
}