File: itkBSplineScatteredDataPointSetToImageFilterTest3.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (155 lines) | stat: -rw-r--r-- 4,525 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkCastImageFilter.h"
#include "itkImageFileWriter.h"
#include "itkPointSet.h"
#include "itkBSplineScatteredDataPointSetToImageFilter.h"
#include "itkTestingMacros.h"

#include <fstream>

/**
 * In this test, we approximate a sequence of 3D points with a parametric
 * curve described by B-Splines
 */
int
itkBSplineScatteredDataPointSetToImageFilterTest3(int argc, char * argv[])
{

  if (argc < 3)
  {
    std::cerr << "Missing parameters." << std::endl;
    std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);
    std::cerr << "inputPointsFile.txt outputImage" << std::endl;
    return EXIT_FAILURE;
  }

  constexpr unsigned int ParametricDimension = 1;
  constexpr unsigned int DataDimension = 3;

  using RealType = double;
  using OutputPixelType = unsigned char;
  using VectorType = itk::Vector<RealType, DataDimension>;
  using OutputVectorType = itk::Vector<OutputPixelType, DataDimension>;
  using ImageType = itk::Image<VectorType, ParametricDimension>;
  using OutputImageType = itk::Image<OutputVectorType, ParametricDimension>;
  using PointSetPixelType = VectorType;

  using PointSetType = itk::PointSet<PointSetPixelType, ParametricDimension>;

  auto pointSet = PointSetType::New();

  // Read the input points
  std::ifstream inputFile;
  inputFile.open(argv[1]);

  // The actual data to be approximated
  VectorType P;

  // Parameter of the curve
  PointSetType::PointType parameterPosition;

  unsigned int pointCounter = 0;

  inputFile >> P;

  //  FIXME: add parameterization of the input points, in the range [0:1]
  double t = 0.0;

  while (!inputFile.eof())
  {
    parameterPosition[0] = t;
    t += 0.01; // FIXME

    pointSet->SetPoint(pointCounter, parameterPosition);
    pointSet->SetPointData(pointCounter, P);

    pointCounter++;
    inputFile >> P;
  }

  inputFile.close();

  // Instantiate the filter and set the parameters
  using FilterType = itk::BSplineScatteredDataPointSetToImageFilter<PointSetType, ImageType>;

  auto filter = FilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, BSplineScatteredDataPointSetToImageFilter, PointSetToImageFilter);

  // Define the parametric domain
  ImageType::SpacingType spacing;
  spacing.Fill(0.001);
  ImageType::SizeType size;
  // Adding 0.5 to avoid rounding errors
  size.Fill(static_cast<unsigned int>(1.0 / spacing[0] + .5) + 1);
  ImageType::PointType origin;
  origin.Fill(0.0);

  filter->SetSize(size);
  filter->SetOrigin(origin);
  filter->SetSpacing(spacing);
  filter->SetInput(pointSet);

  filter->SetSplineOrder(3);
  FilterType::ArrayType ncps;
  ncps.Fill(4);
  filter->SetNumberOfControlPoints(ncps);

  // We set an extreme number of levels to show how this
  // fails because of the choice of B-spline epsilon
  filter->SetNumberOfLevels(15);

  bool generateOutputImage = true;
  filter->SetGenerateOutputImage(generateOutputImage);
  ITK_TEST_SET_GET_VALUE(generateOutputImage, filter->GetGenerateOutputImage());

  filter->GenerateOutputImageOff();
  ITK_TEST_SET_GET_VALUE(false, filter->GetGenerateOutputImage());

  filter->GenerateOutputImageOn();
  ITK_TEST_SET_GET_VALUE(true, filter->GetGenerateOutputImage());


  ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());

  // Get the filter output
  ImageType::Pointer outputImage = filter->GetOutput();

  // Cast the output image
  using CastImageFilterType = itk::CastImageFilter<ImageType, OutputImageType>;

  auto caster = CastImageFilterType::New();

  caster->SetInput(outputImage);

  // Write the result image
  using WriterType = itk::ImageFileWriter<OutputImageType>;

  auto writer = WriterType::New();

  writer->SetFileName(argv[2]);

  writer->SetInput(caster->GetOutput());

  ITK_TRY_EXPECT_NO_EXCEPTION(writer->Update());


  return EXIT_SUCCESS;
}