File: itkBSplineScatteredDataPointSetToImageFilterTest4.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (240 lines) | stat: -rw-r--r-- 7,651 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkPointSet.h"
#include "itkBSplineScatteredDataPointSetToImageFilter.h"
#include "itkBSplineTransform.h"
#include "itkVectorIndexSelectionCastImageFilter.h"
#include "itkVectorLinearInterpolateImageFunction.h"
#include "itkTestingMacros.h"


/**
 * In this test, we approximate a 2-D scalar field.
 * The scattered data is derived from a segmented
 * image.  We write the output to an image for
 * comparison.
 */
int
itkBSplineScatteredDataPointSetToImageFilterTest4(int, char *[])
{
  constexpr unsigned int ParametricDimension = 3;
  constexpr unsigned int DataDimension = 3;
  constexpr unsigned int SplineOrder = 3;

  using RealType = float;
  using VectorType = itk::Vector<RealType, DataDimension>;
  using VectorImageType = itk::Image<VectorType, ParametricDimension>;
  using PointSetType = itk::PointSet<VectorImageType::PixelType, ParametricDimension>;
  using PointType = PointSetType::PointType;

  // Instantiate the B-spline filter

  using FilterType = itk::BSplineScatteredDataPointSetToImageFilter<PointSetType, VectorImageType>;

  VectorImageType::SizeType size;
  size.Fill(100);
  VectorImageType::PointType origin;
  origin.Fill(0);
  VectorImageType::SpacingType spacing;
  spacing.Fill(1);
  VectorImageType::DirectionType direction;
  direction.SetIdentity();

  // Instantiate example corresponding points with relative weighting

  auto pointSet = PointSetType::New();
  pointSet->Initialize();

  using WeightsContainerType = FilterType::WeightsContainerType;
  auto weights = WeightsContainerType::New();
  weights->Initialize();

  // Create first landmark pair and weights
  PointType landmarkInFirstImage1;
  PointType landmarkInSecondImage1;

  landmarkInFirstImage1[0] = 4.0;
  landmarkInFirstImage1[1] = 4.0;
  landmarkInFirstImage1[2] = 4.0;

  landmarkInSecondImage1[0] = 5.0;
  landmarkInSecondImage1[1] = 5.0;
  landmarkInSecondImage1[2] = 5.0;

  RealType weight1 = 1.0;
  weights->InsertElement(0, weight1);

  VectorType vector1;
  for (unsigned int d = 0; d < DataDimension; ++d)
  {
    vector1[d] = landmarkInSecondImage1[d] - landmarkInFirstImage1[d];
  }
  pointSet->SetPoint(0, landmarkInFirstImage1);
  pointSet->SetPointData(0, vector1);

  // Create second landmark pair
  PointType landmarkInFirstImage2;
  PointType landmarkInSecondImage2;

  landmarkInFirstImage2[0] = 25.0;
  landmarkInFirstImage2[1] = 25.0;
  landmarkInFirstImage2[2] = 25.0;

  landmarkInSecondImage2[0] = 30.0;
  landmarkInSecondImage2[1] = 35.0;
  landmarkInSecondImage2[2] = 45.0;

  RealType weight2 = 3.0;
  weights->InsertElement(1, weight2);

  VectorType vector2;
  for (unsigned int d = 0; d < DataDimension; ++d)
  {
    vector2[d] = landmarkInSecondImage2[d] - landmarkInFirstImage2[d];
  }
  pointSet->SetPoint(1, landmarkInFirstImage2);
  pointSet->SetPointData(1, vector2);

  // Create third landmark pair
  PointType landmarkInFirstImage3;
  PointType landmarkInSecondImage3;

  landmarkInFirstImage3[0] = 25.0;
  landmarkInFirstImage3[1] = 25.0;
  landmarkInFirstImage3[2] = 25.0;

  landmarkInSecondImage3[0] = 30.0;
  landmarkInSecondImage3[1] = 35.0;
  landmarkInSecondImage3[2] = 45.0;

  RealType weight3 = 0.5;
  weights->InsertElement(2, weight3);

  VectorType vector3;
  for (unsigned int d = 0; d < DataDimension; ++d)
  {
    vector3[d] = landmarkInSecondImage3[d] - landmarkInFirstImage3[d];
  }
  pointSet->SetPoint(2, landmarkInFirstImage3);
  pointSet->SetPointData(2, vector3);

  // Now fit the displacement

  auto filter = FilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, BSplineScatteredDataPointSetToImageFilter, PointSetToImageFilter);

  // Define the parametric domain.
  filter->SetOrigin(origin);
  filter->SetSpacing(spacing);
  filter->SetSize(size);
  filter->SetDirection(direction);
  filter->SetInput(pointSet);
  filter->SetPointWeights(weights);

  // we normally don't need the sampled b-spline object
  // so we should turn this off but since we want to
  // compare, we need to have it on.
  // we only need the control point lattice to
  // set as input in the bspline transform.
  filter->SetGenerateOutputImage(true);

  // Define the rest of the B-spline parameters.
  // Note that some are transferred to the B-spline
  // transform.  Specifically, this includes the final
  // number of control points and the spline order.
  filter->SetSplineOrder(SplineOrder);
  FilterType::ArrayType ncps;
  ncps.Fill(4);
  filter->SetNumberOfControlPoints(ncps);
  filter->SetNumberOfLevels(3);
  FilterType::ArrayType close;
  close.Fill(0);
  filter->SetCloseDimension(close);


  ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());


  // Instantiate the BSpline transform

  using TransformType = itk::BSplineTransform<float, DataDimension, SplineOrder>;
  auto transform = TransformType::New();

  using CoefficientImageType = TransformType::ImageType;

  TransformType::CoefficientImageArray coefficientImages;
  for (unsigned int j = 0; j < DataDimension; ++j)
  {
    using SelectorType = itk::VectorIndexSelectionCastImageFilter<VectorImageType, CoefficientImageType>;
    auto selector = SelectorType::New();
    selector->SetInput(filter->GetPhiLattice());
    selector->SetIndex(j);

    coefficientImages[j] = selector->GetOutput();
    coefficientImages[j]->Update();
    coefficientImages[j]->DisconnectPipeline();
  }

  transform->SetCoefficientImages(coefficientImages);

  using InputPointType = TransformType::InputPointType;
  using OutputPointType = TransformType::OutputPointType;

  InputPointType inputPoint;
  inputPoint.Fill(50.0);

  OutputPointType outputPoint = transform->TransformPoint(inputPoint);

  // Now instantiate an interpolator to get an approximation of what
  // the transform should produce

  using InterpolatorType = itk::VectorLinearInterpolateImageFunction<VectorImageType>;
  auto interpolator = InterpolatorType::New();
  interpolator->SetInputImage(filter->GetOutput());

  VectorImageType::PointType testPoint;
  testPoint.CastFrom(inputPoint);

  VectorType vector = interpolator->Evaluate(testPoint);
  RealType   testDistance = vector.GetNorm();
  RealType   approximateDistance = inputPoint.EuclideanDistanceTo(outputPoint);

  VectorImageType::PointType approximateOutputPoint;
  for (unsigned int d = 0; d < DataDimension; ++d)
  {
    approximateOutputPoint[d] = testPoint[d] + vector[d];
  }

  std::cout << "Input point " << inputPoint << std::endl;
  std::cout << "True output point " << outputPoint << std::endl;
  std::cout << "Approximate output point " << approximateOutputPoint << std::endl;

  if (itk::Math::abs(testDistance - approximateDistance) > 0.0001)
  {
    std::cerr << "Didn't return correct distance." << std::endl;

    std::cerr << "true distance: " << testDistance << std::endl;
    std::cerr << "Approximate distance: " << approximateDistance << std::endl;

    return EXIT_FAILURE;
  }

  return EXIT_SUCCESS;
}