1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkCastImageFilter.h"
#include "itkImageFileWriter.h"
#include "itkPointSet.h"
#include "itkBSplineScatteredDataPointSetToImageFilter.h"
#include "itkTestingMacros.h"
#include "itkImageRegionIterator.h"
/**
* Function to convert image of double precison vector pixels to a
* representation of scalar values that are easy to view and test.
* NOTE: Similar function in itkSymmetricEigenAnalysisImageFilterTest.cxx
*/
template <typename InternalImageType>
static void
makeTestableScalarImage(typename InternalImageType::Pointer internalImage, std::string outputFilename)
{ // using OutputPixelType = unsigned char;
using OutputPixelType = uint8_t;
using OutputImageType = itk::Image<OutputPixelType, 2>;
OutputImageType::Pointer outputImage = OutputImageType::New();
outputImage->CopyInformation(internalImage);
outputImage->SetRegions(internalImage->GetBufferedRegion());
outputImage->AllocateInitialized();
auto myiterator = itk::ImageRegionConstIterator<InternalImageType>(internalImage, internalImage->GetBufferedRegion());
auto myOutiterator = itk::ImageRegionIterator<OutputImageType>(outputImage, outputImage->GetBufferedRegion());
// Convert vector image to magnitude and scale to use range of png values
float max_magnitude_value = 0.0;
while (!myiterator.IsAtEnd())
{
const auto arr = myiterator.Get();
const auto magvalue = std::sqrt(arr[0] * arr[0] + arr[1] * arr[1] + arr[2] * arr[2]);
max_magnitude_value = std::max<float>(max_magnitude_value, magvalue);
++myiterator;
}
const float scale_factor = 255.0 / ceil(max_magnitude_value);
myOutiterator.GoToBegin();
myiterator.GoToBegin();
while (!myOutiterator.IsAtEnd())
{
// Convert vector image to magnitude and scale to use range of png values
const auto arr = myiterator.Get();
const auto magvalue = std::sqrt(arr[0] * arr[0] + arr[1] * arr[1] + arr[2] * arr[2]);
myOutiterator.Set(magvalue * scale_factor);
++myiterator;
++myOutiterator;
}
// Write the result image
using WriterType = itk::ImageFileWriter<OutputImageType>;
auto writer = WriterType::New();
writer->SetFileName(outputFilename);
writer->SetInput(outputImage);
writer->Update();
}
/**
* In this test, we approximate a sequence of 3D points with a
* parametric curve described by B-Splines. Specifically, we
* create 3-D trefoil knot parametric surface:
* https://en.wikipedia.org/wiki/Trefoil_knot
* which is closed in both parametric dimensions.
*/
int
itkBSplineScatteredDataPointSetToImageFilterTest5(int argc, char * argv[])
{
if (argc < 2)
{
std::cerr << "Missing parameters." << std::endl;
std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);
std::cerr << "outputImage" << std::endl;
return EXIT_FAILURE;
}
constexpr unsigned int ParametricDimension = 2;
constexpr unsigned int DataDimension = 3;
using RealType = double;
using VectorType = itk::Vector<RealType, DataDimension>;
using ImageType = itk::Image<VectorType, ParametricDimension>;
using PointSetType = itk::PointSet<VectorType, ParametricDimension>;
auto pointSet = PointSetType::New();
// Sample the trefoil knot.
// The first parametric dimension, u, is doing the knot part
// whereas the second dimension, v, is going around in a simple circle.
for (RealType u = -2.0 * itk::Math::pi; u <= 2.0 * itk::Math::pi; u += 0.1)
{
for (RealType v = -itk::Math::pi; v <= itk::Math::pi; v += 0.1)
{
PointSetType::PointType point;
point[0] = (u + 2.0 * itk::Math::pi) / (4.0 * itk::Math::pi);
point[1] = (v + itk::Math::pi) / (2.0 * itk::Math::pi);
const unsigned long i = pointSet->GetNumberOfPoints();
pointSet->SetPoint(i, point);
VectorType V;
V[0] = std::cos(u) * std::cos(v) + 3.0 * std::cos(u) * (1.5 + 0.5 * std::sin(1.5 * u));
V[1] = std::sin(u) * std::cos(v) + 3.0 * std::sin(u) * (1.5 + 0.5 * std::sin(1.5 * u));
V[2] = std::sin(v) + 2.0 * std::cos(1.5 * u);
pointSet->SetPointData(i, V);
}
}
// Instantiate the filter and set the parameters
using FilterType = itk::BSplineScatteredDataPointSetToImageFilter<PointSetType, ImageType>;
auto filter = FilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, BSplineScatteredDataPointSetToImageFilter, PointSetToImageFilter);
// Define the parametric domain
ImageType::SpacingType spacing;
spacing[0] = 0.001;
spacing[1] = 0.01;
filter->SetSpacing(spacing);
ImageType::SizeType size;
size[0] = 1000;
size[1] = 100;
ImageType::PointType origin;
origin.Fill(0.0);
filter->SetSize(size);
filter->SetOrigin(origin);
filter->SetSpacing(spacing);
filter->SetInput(pointSet);
filter->SetSplineOrder(3);
FilterType::ArrayType ncps;
ncps[0] = 7;
ncps[1] = 10;
filter->SetNumberOfControlPoints(ncps);
filter->SetNumberOfLevels(4);
filter->SetGenerateOutputImage(false);
FilterType::ArrayType close;
close.Fill(1);
filter->SetCloseDimension(close);
ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());
const std::string outputFilename = argv[1];
auto phiLatticeImage = filter->GetPhiLattice();
ITK_TRY_EXPECT_NO_EXCEPTION(makeTestableScalarImage<FilterType::PointDataImageType>(phiLatticeImage, outputFilename));
return EXIT_SUCCESS;
}
|