File: itkBSplineScatteredDataPointSetToImageFilterTest5.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (175 lines) | stat: -rw-r--r-- 6,073 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkCastImageFilter.h"
#include "itkImageFileWriter.h"
#include "itkPointSet.h"
#include "itkBSplineScatteredDataPointSetToImageFilter.h"
#include "itkTestingMacros.h"
#include "itkImageRegionIterator.h"


/**
 * Function to convert image of double precison vector pixels to a
 * representation of scalar values that are easy to view and test.
 * NOTE: Similar function in itkSymmetricEigenAnalysisImageFilterTest.cxx
 */
template <typename InternalImageType>
static void
makeTestableScalarImage(typename InternalImageType::Pointer internalImage, std::string outputFilename)
{ // using OutputPixelType = unsigned char;
  using OutputPixelType = uint8_t;
  using OutputImageType = itk::Image<OutputPixelType, 2>;

  OutputImageType::Pointer outputImage = OutputImageType::New();
  outputImage->CopyInformation(internalImage);
  outputImage->SetRegions(internalImage->GetBufferedRegion());
  outputImage->AllocateInitialized();

  auto myiterator = itk::ImageRegionConstIterator<InternalImageType>(internalImage, internalImage->GetBufferedRegion());
  auto myOutiterator = itk::ImageRegionIterator<OutputImageType>(outputImage, outputImage->GetBufferedRegion());

  // Convert vector image to magnitude and scale to use range of png values
  float max_magnitude_value = 0.0;
  while (!myiterator.IsAtEnd())
  {
    const auto arr = myiterator.Get();
    const auto magvalue = std::sqrt(arr[0] * arr[0] + arr[1] * arr[1] + arr[2] * arr[2]);
    max_magnitude_value = std::max<float>(max_magnitude_value, magvalue);
    ++myiterator;
  }
  const float scale_factor = 255.0 / ceil(max_magnitude_value);
  myOutiterator.GoToBegin();
  myiterator.GoToBegin();
  while (!myOutiterator.IsAtEnd())
  {
    // Convert vector image to magnitude and scale to use range of png values
    const auto arr = myiterator.Get();
    const auto magvalue = std::sqrt(arr[0] * arr[0] + arr[1] * arr[1] + arr[2] * arr[2]);
    myOutiterator.Set(magvalue * scale_factor);
    ++myiterator;
    ++myOutiterator;
  }

  // Write the result image
  using WriterType = itk::ImageFileWriter<OutputImageType>;
  auto writer = WriterType::New();
  writer->SetFileName(outputFilename);
  writer->SetInput(outputImage);
  writer->Update();
}


/**
 * In this test, we approximate a sequence of 3D points with a
 * parametric curve described by B-Splines. Specifically, we
 * create 3-D trefoil knot parametric surface:
 *  https://en.wikipedia.org/wiki/Trefoil_knot
 * which is closed in both parametric dimensions.
 */
int
itkBSplineScatteredDataPointSetToImageFilterTest5(int argc, char * argv[])
{
  if (argc < 2)
  {
    std::cerr << "Missing parameters." << std::endl;
    std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);
    std::cerr << "outputImage" << std::endl;
    return EXIT_FAILURE;
  }

  constexpr unsigned int ParametricDimension = 2;
  constexpr unsigned int DataDimension = 3;

  using RealType = double;

  using VectorType = itk::Vector<RealType, DataDimension>;
  using ImageType = itk::Image<VectorType, ParametricDimension>;

  using PointSetType = itk::PointSet<VectorType, ParametricDimension>;

  auto pointSet = PointSetType::New();

  // Sample the trefoil knot.
  // The first parametric dimension, u,  is doing the knot part
  // whereas the second dimension, v, is going around in a simple circle.
  for (RealType u = -2.0 * itk::Math::pi; u <= 2.0 * itk::Math::pi; u += 0.1)
  {
    for (RealType v = -itk::Math::pi; v <= itk::Math::pi; v += 0.1)
    {
      PointSetType::PointType point;
      point[0] = (u + 2.0 * itk::Math::pi) / (4.0 * itk::Math::pi);
      point[1] = (v + itk::Math::pi) / (2.0 * itk::Math::pi);
      const unsigned long i = pointSet->GetNumberOfPoints();
      pointSet->SetPoint(i, point);

      VectorType V;
      V[0] = std::cos(u) * std::cos(v) + 3.0 * std::cos(u) * (1.5 + 0.5 * std::sin(1.5 * u));
      V[1] = std::sin(u) * std::cos(v) + 3.0 * std::sin(u) * (1.5 + 0.5 * std::sin(1.5 * u));
      V[2] = std::sin(v) + 2.0 * std::cos(1.5 * u);

      pointSet->SetPointData(i, V);
    }
  }

  // Instantiate the filter and set the parameters
  using FilterType = itk::BSplineScatteredDataPointSetToImageFilter<PointSetType, ImageType>;

  auto filter = FilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, BSplineScatteredDataPointSetToImageFilter, PointSetToImageFilter);

  // Define the parametric domain
  ImageType::SpacingType spacing;
  spacing[0] = 0.001;
  spacing[1] = 0.01;
  filter->SetSpacing(spacing);

  ImageType::SizeType size;
  size[0] = 1000;
  size[1] = 100;

  ImageType::PointType origin;
  origin.Fill(0.0);

  filter->SetSize(size);
  filter->SetOrigin(origin);
  filter->SetSpacing(spacing);
  filter->SetInput(pointSet);
  filter->SetSplineOrder(3);

  FilterType::ArrayType ncps;
  ncps[0] = 7;
  ncps[1] = 10;

  filter->SetNumberOfControlPoints(ncps);
  filter->SetNumberOfLevels(4);
  filter->SetGenerateOutputImage(false);

  FilterType::ArrayType close;
  close.Fill(1);
  filter->SetCloseDimension(close);

  ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());

  const std::string outputFilename = argv[1];
  auto              phiLatticeImage = filter->GetPhiLattice();
  ITK_TRY_EXPECT_NO_EXCEPTION(makeTestableScalarImage<FilterType::PointDataImageType>(phiLatticeImage, outputFilename));

  return EXIT_SUCCESS;
}