1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <iostream>
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkExpandImageFilter.h"
#include "itkMath.h"
#include "itkVectorImage.h"
#include "itkVariableLengthVector.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkTestingMacros.h"
using PixelType = double;
using VectorImage1D = itk::VectorImage<PixelType, 1>;
using VectorImage3D = itk::VectorImage<PixelType, 3>;
/// Testing ExpandImageFilter with VectorImage
///
/// Generates the value of the test image at a particular index so it is initialized in a single iterator pass.
///
template <typename TVectorImage>
typename TVectorImage::PixelType
GetPattern(const typename TVectorImage::IndexType & index,
const typename TVectorImage::SizeType & size,
unsigned int nImages)
{
typename TVectorImage::PixelType ans(nImages);
int d = TVectorImage::SizeType::Dimension;
int volume = 1;
for (int j = 0; j < d; ++j)
{
volume *= size[j];
}
int x = index[0] + 1;
double coeff = size[0];
for (int j = 1; j < d; ++j)
{
x += index[j] * coeff;
coeff *= size[j];
}
for (unsigned int k = 0; k < nImages; ++k)
{
ans[k] = volume * k + x;
}
return ans;
}
template VectorImage1D::PixelType
GetPattern<VectorImage1D>(const VectorImage1D::IndexType &, const VectorImage1D::SizeType &, unsigned int);
template VectorImage3D::PixelType
GetPattern<VectorImage3D>(const VectorImage3D::IndexType &, const VectorImage3D::SizeType &, unsigned int);
///
/// Pretty prints the values of the small 1D test image. Each "channel" is printed on a separate line in order
///
template <typename TVectorImage>
std::string
PrintTestImage1D(const TVectorImage * img)
{
std::string ans = "";
unsigned int nImages = img->GetVectorLength();
typename TVectorImage::SizeType size = img->GetLargestPossibleRegion().GetSize();
for (unsigned int i = 0; i < nImages; ++i)
{
typename TVectorImage::IndexType index = TVectorImage::IndexType::Filled(0);
ans.append("\n");
for (unsigned int j = 0; j < size[0]; ++j)
{
index.SetElement(0, j);
ans.append(std::to_string(img->GetPixel(index)[i]) + " ");
}
}
return ans;
}
template std::string
PrintTestImage1D<VectorImage1D>(const VectorImage1D *);
///
/// Pretty prints the values of the small 3D test image. Prints in dimension 0 and 1 as a grid, a space separates
/// dimension 2 slices, and a double space separates "channels".
template <typename TVectorImage>
std::string
PrintTestImage3D(const TVectorImage * img)
{
std::string ans = "";
unsigned int nImages = img->GetVectorLength();
typename TVectorImage::SizeType size = img->GetLargestPossibleRegion().GetSize();
for (unsigned int i = 0; i < nImages; ++i)
{
typename TVectorImage::IndexType index = TVectorImage::IndexType::Filled(0);
ans.append("\n\n\n");
for (unsigned int j = 0; j < size[2]; ++j)
{
ans.append("\n\n");
for (unsigned int k = 0; k < size[1]; ++k)
{
ans.append("\n");
for (unsigned int m = 0; m < size[0]; ++m)
{
index.SetElement(0, m);
index.SetElement(1, k);
index.SetElement(2, j);
ans.append(std::to_string(img->GetPixel(index)[i]) + " ");
}
}
}
}
return ans;
}
template std::string
PrintTestImage3D<VectorImage3D>(const VectorImage3D *);
///
/// Create image by traversing channels in dimension starting from 1 and
/// incrementing by 1 every pixel. So, every pixel is uniquely valued from 0 to image volume * number of
/// images/channels - 1;
///
template <typename TVectorImage>
typename TVectorImage::Pointer
GetVectorTestImage(const typename TVectorImage::SizeType & size,
const typename TVectorImage::VectorLengthType & nImages)
{
auto ans = TVectorImage::New();
typename TVectorImage::RegionType region;
region.SetSize(size);
ans->SetLargestPossibleRegion(region);
ans->SetBufferedRegion(region);
ans->SetVectorLength(
nImages); // a collection of nImages with dimension TVectorImage::ImageDimension and pixel type TPixel
ans->Allocate();
itk::ImageRegionIteratorWithIndex<TVectorImage> iter(ans, ans->GetLargestPossibleRegion());
for (iter.GoToBegin(); !iter.IsAtEnd(); ++iter)
{
iter.Set(GetPattern<TVectorImage>(iter.GetIndex(), size, nImages));
}
return ans;
}
template VectorImage1D::Pointer
GetVectorTestImage<VectorImage1D>(const VectorImage1D::SizeType &, const VectorImage1D::VectorLengthType &);
template VectorImage3D::Pointer
GetVectorTestImage<VectorImage3D>(const VectorImage3D::SizeType &, const VectorImage3D::VectorLengthType &);
std::string
DoubleToStringArray(double * a, unsigned int size)
{
std::string ans = "";
for (unsigned int i = 0; i < size; ++i)
{
ans.append(std::to_string(a[i]) + " ");
}
return ans;
}
int
itkExpandImageFilterTest2(int, char *[])
{
int statusValue = EXIT_SUCCESS;
// Test 1D: A 5 pixel long 1D image with 2 channels. Using a NearestNeighborInterpolator for simplicity. Expanding
// by 2.
VectorImage1D::SizeType size1D = { { 5 } };
VectorImage1D::Pointer input1D = GetVectorTestImage<VectorImage1D>(size1D, 2);
std::cout << "Output input1D:" << std::endl;
std::cout << PrintTestImage1D<VectorImage1D>(input1D) << std::endl;
using Expander1DType = itk::ExpandImageFilter<VectorImage1D, VectorImage1D>;
auto expander1D = Expander1DType::New();
using Interpolator1DType = itk::NearestNeighborInterpolateImageFunction<VectorImage1D, double>;
auto interpolator1D = Interpolator1DType::New();
expander1D->SetInterpolator(interpolator1D);
unsigned int factors1[1] = { 2 };
expander1D->SetInput(input1D);
expander1D->SetExpandFactors(factors1);
expander1D->Update();
VectorImage1D::Pointer output1D = expander1D->GetOutput();
std::cout << "Output 1D: " << std::endl;
std::cout << PrintTestImage1D<VectorImage1D>(output1D) << std::endl;
auto s1 = output1D->GetLargestPossibleRegion().GetSize()[0];
ITK_TEST_EXPECT_EQUAL(s1, 10);
double slice1[10] = { 6, 6, 7, 7, 8, 8, 9, 9, 10, 10 };
double sliceOut1[10] = {};
bool b1 = true;
VectorImage1D::IndexType idx1 = VectorImage1D::IndexType::Filled(0);
for (int i = 0; i < 10; ++i)
{
idx1[0] = i;
sliceOut1[i] = output1D->GetPixel(idx1)[1];
b1 = b1 && itk::Math::FloatAlmostEqual(slice1[i], sliceOut1[i]); // nearest neighbor, don't need epsilon
}
if (!b1)
{
std::cerr << "Test failed!" << std::endl;
std::cerr << "Error in 1D image channel 2" << std::endl;
std::cerr << "Expected: " << DoubleToStringArray(slice1, 10) << std::endl;
std::cerr << " , but got: " << DoubleToStringArray(sliceOut1, 10) << std::endl;
statusValue = EXIT_FAILURE;
}
// Test 3D: a 3 x 3 4-channel image. Like above, incremental pixel values along each channel, dim 0, dim 1, dim 2.
// Channel 1 values are 1-27, Channel 2 is 28-54, etc. Expanding by 2 along dim 1.
VectorImage3D::SizeType size3D = { { 3, 3, 3 } };
VectorImage3D::Pointer input3D = GetVectorTestImage<VectorImage3D>(size3D, 4);
std::cout << "Output input3D:" << std::endl;
std::cout << PrintTestImage3D<VectorImage3D>(input3D) << std::endl;
using Expander3DType = itk::ExpandImageFilter<VectorImage3D, VectorImage3D>;
auto expander3D = Expander3DType::New();
using Interpolator3DType = itk::NearestNeighborInterpolateImageFunction<VectorImage3D, double>;
auto interpolator3D = Interpolator3DType::New();
expander3D->SetInterpolator(interpolator3D);
unsigned int factors3[3] = { 1, 2, 1 };
expander3D->SetInput(input3D);
expander3D->SetExpandFactors(factors3);
expander3D->Update();
VectorImage3D::Pointer output3D = expander3D->GetOutput();
std::cout << "Output 3D: " << std::endl;
std::cout << PrintTestImage3D<VectorImage3D>(output3D) << std::endl;
VectorImage3D::SizeType s2 = output3D->GetLargestPossibleRegion().GetSize();
double d3[3] = { 3, 6, 3 };
double d4[3] = {};
bool b2 = true;
for (int i = 0; i < 3; ++i)
{
d4[i] = s2[i];
b2 = b2 && itk::Math::FloatAlmostEqual(d3[i], d4[i]);
}
if (!b2)
{
std::cerr << "Test failed!" << std::endl;
std::cerr << "Error in 3D image size" << std::endl;
std::cerr << "Expected: " << DoubleToStringArray(d3, 3) << std::endl;
std::cerr << " , but got: " << DoubleToStringArray(d4, 3) << std::endl;
statusValue = EXIT_FAILURE;
}
double slice3[6] = { 38, 38, 41, 41, 44, 44 };
double slice3Out[6] = {};
VectorImage3D::IndexType idx2;
idx2[0] = 1;
idx2[2] = 1;
bool b3 = true;
for (int i = 0; i < 6; ++i)
{
idx2[1] = i;
slice3Out[i] = output3D->GetPixel(idx2)[1];
b3 = b3 && itk::Math::FloatAlmostEqual(slice3[i], slice3Out[i]);
}
if (!b3)
{
std::cerr << "Test failed!" << std::endl;
std::cerr << "Error in 3D image (1,0:9,1) Channel 2" << std::endl;
std::cerr << "Expected: " << DoubleToStringArray(slice3, 6) << std::endl;
std::cerr << " , but got: " << DoubleToStringArray(slice3Out, 6) << std::endl;
statusValue = EXIT_FAILURE;
}
std::cout << "Test finished." << std::endl;
return statusValue;
}
|