1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <iostream>
#include "itkAffineTransform.h"
#include "itkResampleImageFilter.h"
#include "itkImageFileWriter.h"
#include "itkMath.h"
#include "itkTestingMacros.h"
int
itkResampleImageTest(int, char *[])
{
constexpr unsigned int VDimension = 2;
using PixelType = float;
using ImageType = itk::Image<PixelType, VDimension>;
using ImageIndexType = ImageType::IndexType;
using ImagePointerType = ImageType::Pointer;
using ImageRegionType = ImageType::RegionType;
using ImageSizeType = ImageType::SizeType;
using CoordRepType = double;
using AffineTransformType = itk::AffineTransform<CoordRepType, VDimension>;
using InterpolatorType = itk::LinearInterpolateImageFunction<ImageType, CoordRepType>;
// Create and configure an image
ImagePointerType image = ImageType::New();
ImageIndexType index = { { 0, 0 } };
ImageSizeType size = { { 18, 12 } };
ImageRegionType region{ index, size };
image->SetLargestPossibleRegion(region);
image->SetBufferedRegion(region);
image->Allocate();
// Fill image with a ramp
itk::ImageRegionIteratorWithIndex<ImageType> iter(image, region);
PixelType value;
for (iter.GoToBegin(); !iter.IsAtEnd(); ++iter)
{
index = iter.GetIndex();
value = index[0] + index[1];
iter.Set(value);
}
// Create an affine transformation
auto aff = AffineTransformType::New();
aff->Scale(0.5);
// Create a linear interpolation image function
auto interp = InterpolatorType::New();
interp->SetInputImage(image);
// Create and configure a resampling filter
itk::ResampleImageFilter<ImageType, ImageType>::Pointer resample =
itk::ResampleImageFilter<ImageType, ImageType>::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(resample, ResampleImageFilter, ImageToImageFilter);
resample->SetInput(image);
ITK_TEST_SET_GET_VALUE(image, resample->GetInput());
resample->SetSize(size);
ITK_TEST_SET_GET_VALUE(size, resample->GetSize());
resample->SetTransform(aff);
ITK_TEST_SET_GET_VALUE(aff, resample->GetTransform());
resample->SetInterpolator(interp);
ITK_TEST_SET_GET_VALUE(interp, resample->GetInterpolator());
index.Fill(0);
resample->SetOutputStartIndex(index);
ITK_TEST_SET_GET_VALUE(index, resample->GetOutputStartIndex());
ImageType::PointType origin;
origin.Fill(0.0);
resample->SetOutputOrigin(origin);
ITK_TEST_SET_GET_VALUE(origin, resample->GetOutputOrigin());
ImageType::SpacingType spacing;
spacing.Fill(1.0);
resample->SetOutputSpacing(spacing);
ITK_TEST_SET_GET_VALUE(spacing, resample->GetOutputSpacing());
// Run the resampling filter
resample->Update();
// Check if desired results were obtained
bool passed = true;
ImageType::RegionType region2;
region2 = resample->GetOutput()->GetRequestedRegion();
itk::ImageRegionIteratorWithIndex<ImageType> iter2(resample->GetOutput(), region2);
PixelType pixval;
const double tolerance = 1e-30;
for (iter2.GoToBegin(); !iter2.IsAtEnd(); ++iter2)
{
index = iter2.GetIndex();
value = iter2.Get();
pixval = value;
auto expectedValue = static_cast<PixelType>((index[0] + index[1]) / 2.0);
if (!itk::Math::FloatAlmostEqual(expectedValue, pixval, 10, tolerance))
{
std::cout << "Error in resampled image: Pixel " << index << "value = " << value << " "
<< "pixval = " << pixval << " "
<< "expected = " << expectedValue << std::endl;
passed = false;
}
}
// Report success or failure
if (!passed)
{
std::cout << "Resampling test failed" << std::endl;
return EXIT_FAILURE;
}
// Exercise error handling
try
{
std::cout << "Setting interpolator to nullptr" << std::endl;
passed = false;
resample->SetInterpolator(nullptr);
resample->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cout << err << std::endl;
passed = true;
resample->ResetPipeline();
resample->SetInterpolator(interp);
}
if (!passed)
{
std::cout << "Resampling test failed" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|