File: itkResampleImageTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (162 lines) | stat: -rw-r--r-- 5,015 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include <iostream>

#include "itkAffineTransform.h"
#include "itkResampleImageFilter.h"
#include "itkImageFileWriter.h"
#include "itkMath.h"
#include "itkTestingMacros.h"

int
itkResampleImageTest(int, char *[])
{

  constexpr unsigned int VDimension = 2;

  using PixelType = float;
  using ImageType = itk::Image<PixelType, VDimension>;
  using ImageIndexType = ImageType::IndexType;
  using ImagePointerType = ImageType::Pointer;
  using ImageRegionType = ImageType::RegionType;
  using ImageSizeType = ImageType::SizeType;
  using CoordRepType = double;

  using AffineTransformType = itk::AffineTransform<CoordRepType, VDimension>;
  using InterpolatorType = itk::LinearInterpolateImageFunction<ImageType, CoordRepType>;


  // Create and configure an image
  ImagePointerType image = ImageType::New();
  ImageIndexType   index = { { 0, 0 } };
  ImageSizeType    size = { { 18, 12 } };
  ImageRegionType  region{ index, size };
  image->SetLargestPossibleRegion(region);
  image->SetBufferedRegion(region);
  image->Allocate();

  // Fill image with a ramp
  itk::ImageRegionIteratorWithIndex<ImageType> iter(image, region);
  PixelType                                    value;
  for (iter.GoToBegin(); !iter.IsAtEnd(); ++iter)
  {
    index = iter.GetIndex();
    value = index[0] + index[1];
    iter.Set(value);
  }

  // Create an affine transformation
  auto aff = AffineTransformType::New();
  aff->Scale(0.5);

  // Create a linear interpolation image function
  auto interp = InterpolatorType::New();
  interp->SetInputImage(image);

  // Create and configure a resampling filter
  itk::ResampleImageFilter<ImageType, ImageType>::Pointer resample =
    itk::ResampleImageFilter<ImageType, ImageType>::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(resample, ResampleImageFilter, ImageToImageFilter);

  resample->SetInput(image);
  ITK_TEST_SET_GET_VALUE(image, resample->GetInput());

  resample->SetSize(size);
  ITK_TEST_SET_GET_VALUE(size, resample->GetSize());

  resample->SetTransform(aff);
  ITK_TEST_SET_GET_VALUE(aff, resample->GetTransform());

  resample->SetInterpolator(interp);
  ITK_TEST_SET_GET_VALUE(interp, resample->GetInterpolator());

  index.Fill(0);
  resample->SetOutputStartIndex(index);
  ITK_TEST_SET_GET_VALUE(index, resample->GetOutputStartIndex());

  ImageType::PointType origin;
  origin.Fill(0.0);
  resample->SetOutputOrigin(origin);
  ITK_TEST_SET_GET_VALUE(origin, resample->GetOutputOrigin());

  ImageType::SpacingType spacing;
  spacing.Fill(1.0);
  resample->SetOutputSpacing(spacing);
  ITK_TEST_SET_GET_VALUE(spacing, resample->GetOutputSpacing());


  // Run the resampling filter
  resample->Update();

  // Check if desired results were obtained
  bool                  passed = true;
  ImageType::RegionType region2;
  region2 = resample->GetOutput()->GetRequestedRegion();
  itk::ImageRegionIteratorWithIndex<ImageType> iter2(resample->GetOutput(), region2);
  PixelType                                    pixval;
  const double                                 tolerance = 1e-30;
  for (iter2.GoToBegin(); !iter2.IsAtEnd(); ++iter2)
  {
    index = iter2.GetIndex();
    value = iter2.Get();
    pixval = value;
    auto expectedValue = static_cast<PixelType>((index[0] + index[1]) / 2.0);
    if (!itk::Math::FloatAlmostEqual(expectedValue, pixval, 10, tolerance))
    {
      std::cout << "Error in resampled image: Pixel " << index << "value    = " << value << "  "
                << "pixval   = " << pixval << "  "
                << "expected = " << expectedValue << std::endl;
      passed = false;
    }
  }

  // Report success or failure
  if (!passed)
  {
    std::cout << "Resampling test failed" << std::endl;
    return EXIT_FAILURE;
  }

  // Exercise error handling

  try
  {
    std::cout << "Setting interpolator to nullptr" << std::endl;
    passed = false;
    resample->SetInterpolator(nullptr);
    resample->Update();
  }
  catch (const itk::ExceptionObject & err)
  {
    std::cout << err << std::endl;
    passed = true;
    resample->ResetPipeline();
    resample->SetInterpolator(interp);
  }

  if (!passed)
  {
    std::cout << "Resampling test failed" << std::endl;
    return EXIT_FAILURE;
  }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}