1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <iostream>
#include "itkAffineTransform.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkNearestNeighborExtrapolateImageFunction.h"
#include "itkTestingMacros.h"
/* Further testing of itkResampleImageFilter
* Output is compared with baseline image using the cmake itk_add_test
* '--compare' option.
*/
namespace
{
template <typename TCoordRepType, unsigned int VDimension>
class NonlinearAffineTransform : public itk::AffineTransform<TCoordRepType, VDimension>
{
public:
/** Standard class type aliases. */
using Self = NonlinearAffineTransform;
using Superclass = itk::AffineTransform<TCoordRepType, VDimension>;
using Pointer = itk::SmartPointer<Self>;
using ConstPointer = itk::SmartPointer<const Self>;
/** New macro for creation of through a smart pointer. */
itkSimpleNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(NonlinearAffineTransform);
/** Override this. See test below. */
bool
IsLinear() const override
{
return false;
}
};
} // namespace
int
itkResampleImageTest2(int argc, char * argv[])
{
if (argc < 8)
{
std::cerr << "Missing parameters." << std::endl;
std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);
std::cerr << "inputImage "
<< " referenceImage"
<< " resampledImageLinear"
<< " resampledImageNonLinear"
<< " resampledImageLinearNearestExtrapolate"
<< " resampledImageNonLinearNearestExtrapolate"
<< " useReferenceImage"
<< " [outputSpacing]" << std::endl;
return EXIT_FAILURE;
}
constexpr unsigned int VDimension = 2;
using PixelType = unsigned char;
using ImageType = itk::Image<PixelType, VDimension>;
using CoordRepType = double;
using AffineTransformType = itk::AffineTransform<CoordRepType, VDimension>;
using NonlinearAffineTransformType = NonlinearAffineTransform<CoordRepType, VDimension>;
using InterpolatorType = itk::LinearInterpolateImageFunction<ImageType, CoordRepType>;
using ExtrapolatorType = itk::NearestNeighborExtrapolateImageFunction<ImageType, CoordRepType>;
using ReaderType = itk::ImageFileReader<ImageType>;
using WriterType = itk::ImageFileWriter<ImageType>;
auto reader1 = ReaderType::New();
auto reader2 = ReaderType::New();
auto writer1 = WriterType::New();
auto writer2 = WriterType::New();
auto writer3 = WriterType::New();
auto writer4 = WriterType::New();
reader1->SetFileName(argv[1]);
writer1->SetFileName(argv[3]);
writer2->SetFileName(argv[4]);
writer3->SetFileName(argv[5]);
writer4->SetFileName(argv[6]);
// Create an affine transformation
auto affineTransform = AffineTransformType::New();
affineTransform->Scale(2.0);
// Create a linear interpolation image function
auto interpolator = InterpolatorType::New();
// Create a nearest neighbor extrapolate image function
auto extrapolator = ExtrapolatorType::New();
// Create and configure a resampling filter
using ResampleFilterType = itk::ResampleImageFilter<ImageType, ImageType>;
auto resample = ResampleFilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(resample, ResampleImageFilter, ImageToImageFilter);
ITK_TRY_EXPECT_NO_EXCEPTION(reader1->Update());
resample->SetInput(reader1->GetOutput());
ITK_TEST_SET_GET_VALUE(reader1->GetOutput(), resample->GetInput());
resample->SetTransform(affineTransform);
ITK_TEST_SET_GET_VALUE(affineTransform, resample->GetTransform());
resample->SetInterpolator(interpolator);
ITK_TEST_SET_GET_VALUE(interpolator, resample->GetInterpolator());
bool useReferenceImage = std::stoi(argv[7]);
ITK_TEST_SET_GET_BOOLEAN(resample, UseReferenceImage, useReferenceImage);
// If the reference image is to be used, read it and set it to the filter;
// else, create an image region for the output image.
if (useReferenceImage)
{
reader2->SetFileName(argv[2]);
ITK_TRY_EXPECT_NO_EXCEPTION(reader2->Update());
resample->SetReferenceImage(reader2->GetOutput());
ITK_TEST_SET_GET_VALUE(reader2->GetOutput(), resample->GetReferenceImage());
}
else
{
// Set a fixed, isotropic output spacing
typename ImageType::SpacingType::ValueType outputSpacingValue = 1.5;
if (argc > 7)
{
outputSpacingValue = std::stod(argv[8]);
}
typename ImageType::SpacingType outputSpacing;
for (unsigned int i = 0; i < VDimension; ++i)
{
outputSpacing[i] = outputSpacingValue;
}
const typename ImageType::SizeType & inputSize = resample->GetInput()->GetLargestPossibleRegion().GetSize();
const typename ImageType::SpacingType & inputSpacing = resample->GetInput()->GetSpacing();
typename ImageType::SizeType outputSize;
using SizeValueType = typename ImageType::SizeType::SizeValueType;
for (unsigned int i = 0; i < VDimension; ++i)
{
outputSize[i] =
itk::Math::Ceil<SizeValueType>(static_cast<double>(inputSize[i]) * inputSpacing[i] / outputSpacing[i]);
}
typename ImageType::DirectionType outputDirection = resample->GetInput()->GetDirection();
typename ImageType::PointType outputOrigin = resample->GetInput()->GetOrigin();
resample->SetOutputSpacing(outputSpacing);
ITK_TEST_SET_GET_VALUE(outputSpacing, resample->GetOutputSpacing());
resample->SetSize(outputSize);
ITK_TEST_SET_GET_VALUE(outputSize, resample->GetSize());
resample->SetOutputOrigin(outputOrigin);
ITK_TEST_SET_GET_VALUE(outputOrigin, resample->GetOutputOrigin());
resample->SetOutputDirection(outputDirection);
ITK_TEST_SET_GET_VALUE(outputDirection, resample->GetOutputDirection());
}
// Run the resampling filter with the normal, linear, affine transform.
// This will use ResampleImageFilter::LinearThreadedGenerateData().
std::cout << "Test with normal AffineTransform." << std::endl;
ITK_TRY_EXPECT_NO_EXCEPTION(resample->Update());
writer1->SetInput(resample->GetOutput());
// Check GetReferenceImage
if (useReferenceImage)
{
if (resample->GetReferenceImage() != reader2->GetOutput())
{
std::cerr << "Test failed!" << std::endl;
std::cerr << "GetReferenceImage() failed ! " << std::endl;
return EXIT_FAILURE;
}
}
ITK_TRY_EXPECT_NO_EXCEPTION(writer1->Update());
// Assign an affine transform that returns
// false for IsLinear() instead of true, to force
// the filter to use the NonlinearThreadedGenerateData method
// instead of LinearThreadedGenerateData. This will test that
// we get the same results for both methods.
std::cout << "Test with NonlinearAffineTransform." << std::endl;
auto nonlinearAffineTransform = NonlinearAffineTransformType::New();
nonlinearAffineTransform->Scale(2.0);
resample->SetTransform(nonlinearAffineTransform);
ITK_TRY_EXPECT_NO_EXCEPTION(resample->Update());
writer2->SetInput(resample->GetOutput());
ITK_TRY_EXPECT_NO_EXCEPTION(writer2->Update());
// Instead of using the default pixel when sampling outside the input image,
// we use a nearest neighbor extrapolator.
std::cout << "Test with nearest neighbor extrapolator, affine transform." << std::endl;
resample->SetTransform(affineTransform);
resample->SetExtrapolator(extrapolator);
ITK_TEST_SET_GET_VALUE(extrapolator, resample->GetExtrapolator());
ITK_TRY_EXPECT_NO_EXCEPTION(resample->Update());
writer3->SetInput(resample->GetOutput());
ITK_TRY_EXPECT_NO_EXCEPTION(writer3->Update());
// Instead of using the default pixel when sampling outside the input image,
// we use a nearest neighbor extrapolator.
std::cout << "Test with nearest neighbor extrapolator, nonlinear transform." << std::endl;
resample->SetTransform(nonlinearAffineTransform);
ITK_TRY_EXPECT_NO_EXCEPTION(resample->Update());
writer4->SetInput(resample->GetOutput());
ITK_TRY_EXPECT_NO_EXCEPTION(writer4->Update());
std::cout << "Test finished." << std::endl;
return EXIT_SUCCESS;
}
|