File: itkResampleImageTest2Streaming.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (211 lines) | stat: -rw-r--r-- 8,021 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include <iostream>

#include "itkAffineTransform.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkNearestNeighborExtrapolateImageFunction.h"
#include "itkPipelineMonitorImageFilter.h"
#include "itkTestingMacros.h"

/* Further testing of itkResampleImageFilter
 * Output is compared with baseline image using the cmake itk_add_test
 * '--compare' option.
 */

namespace
{

template <typename TCoordRepType, unsigned int VDimension>
class NonlinearAffineTransform : public itk::AffineTransform<TCoordRepType, VDimension>
{
public:
  /** Standard class type aliases.   */
  using Self = NonlinearAffineTransform;
  using Superclass = itk::AffineTransform<TCoordRepType, VDimension>;
  using Pointer = itk::SmartPointer<Self>;
  using ConstPointer = itk::SmartPointer<const Self>;

  /** New macro for creation of through a smart pointer. */
  itkSimpleNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(NonlinearAffineTransform);

  /** Override this so not linear. See test below. */
  typename itk::TransformBaseTemplate<TCoordRepType>::TransformCategoryEnum
  GetTransformCategory() const override
  {
    return itk::TransformBaseTemplate<TCoordRepType>::TransformCategoryEnum::UnknownTransformCategory;
  }
};
} // namespace

int
itkResampleImageTest2Streaming(int argc, char * argv[])
{
  if (argc < 7)
  {
    std::cerr << "Missing parameters." << std::endl;
    std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);
    std::cerr << "inputImage referenceImage resampledImageLinear resampledImageNonLinear "
                 "resampledImageLinearNearestExtrapolate resampledImageNonLinearNearestExtrapolate";
    std::cerr << std::endl;
    return EXIT_FAILURE;
  }

  constexpr unsigned int VDimension = 2;

  using PixelType = unsigned char;
  using ImageType = itk::Image<PixelType, VDimension>;
  using CoordRepType = double;

  using AffineTransformType = itk::AffineTransform<CoordRepType, VDimension>;
  using NonlinearAffineTransformType = NonlinearAffineTransform<CoordRepType, VDimension>;
  using InterpolatorType = itk::LinearInterpolateImageFunction<ImageType, CoordRepType>;
  using ExtrapolatorType = itk::NearestNeighborExtrapolateImageFunction<ImageType, CoordRepType>;

  using ReaderType = itk::ImageFileReader<ImageType>;
  using WriterType = itk::ImageFileWriter<ImageType>;

  auto reader1 = ReaderType::New();
  auto reader2 = ReaderType::New();

  auto writer1 = WriterType::New();
  auto writer2 = WriterType::New();
  auto writer3 = WriterType::New();
  auto writer4 = WriterType::New();

  reader1->SetFileName(argv[1]);
  reader2->SetFileName(argv[2]);

  writer1->SetFileName(argv[3]);
  writer2->SetFileName(argv[4]);
  writer3->SetFileName(argv[5]);
  writer4->SetFileName(argv[6]);

  // Create an affine transformation
  auto affineTransform = AffineTransformType::New();
  affineTransform->Scale(2.0);

  // Create a linear interpolation image function
  auto interpolator = InterpolatorType::New();

  // Create a nearest neighbor extrapolate image function
  auto extrapolator = ExtrapolatorType::New();

  // Create and configure a resampling filter
  using ResampleFilterType = itk::ResampleImageFilter<ImageType, ImageType>;
  auto resample = ResampleFilterType::New();

  using MonitorFilterType = itk::PipelineMonitorImageFilter<ImageType>;
  auto monitor = MonitorFilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(resample, ResampleImageFilter, ImageToImageFilter);

  monitor->SetInput(reader1->GetOutput());
  ITK_TEST_SET_GET_VALUE(reader1->GetOutput(), monitor->GetInput());

  resample->SetReferenceImage(reader2->GetOutput());
  ITK_TEST_SET_GET_VALUE(reader2->GetOutput(), resample->GetReferenceImage());

  resample->UseReferenceImageOn();
  ITK_TEST_EXPECT_TRUE(resample->GetUseReferenceImage());

  resample->SetTransform(affineTransform);
  ITK_TEST_SET_GET_VALUE(affineTransform, resample->GetTransform());

  resample->SetInterpolator(interpolator);
  ITK_TEST_SET_GET_VALUE(interpolator, resample->GetInterpolator());

  resample->SetInput(monitor->GetOutput());
  ITK_TEST_SET_GET_VALUE(monitor->GetOutput(), resample->GetInput());
  writer1->SetInput(resample->GetOutput());

  // Check GetReferenceImage
  if (resample->GetReferenceImage() != reader2->GetOutput())
  {
    std::cerr << "GetReferenceImage() failed ! " << std::endl;
    std::cerr << "Test failed." << std::endl;
    return EXIT_FAILURE;
  }

  // Run the resampling filter with the normal, linear, affine transform.
  // This will use ResampleImageFilter::LinearThreadedGenerateData().
  std::cout << "Test with normal AffineTransform." << std::endl;
  writer1->SetNumberOfStreamDivisions(8); // split into 8 pieces for streaming.
  monitor->ClearPipelineSavedInformation();
  ITK_TRY_EXPECT_NO_EXCEPTION(writer1->Update());

  if (!monitor->VerifyInputFilterExecutedStreaming(8))
  {
    std::cerr << "Streaming failed to execute as expected!" << std::endl;
    std::cerr << monitor;
    std::cerr << "Test failed." << std::endl;
    return EXIT_FAILURE;
  }

  // Assign an affine transform that returns
  // false for IsLinear() instead of true, to force
  // the filter to use the NonlinearThreadedGenerateData method
  // instead of LinearThreadedGenerateData. This will test that
  // we get the same results for both methods.
  std::cout << "Test with NonlinearAffineTransform." << std::endl;
  auto nonlinearAffineTransform = NonlinearAffineTransformType::New();

  nonlinearAffineTransform->Scale(2.0);
  resample->SetTransform(nonlinearAffineTransform);
  monitor->ClearPipelineSavedInformation();
  writer2->SetInput(resample->GetOutput());
  writer2->SetNumberOfStreamDivisions(8);
  ITK_TRY_EXPECT_NO_EXCEPTION(writer2->Update());

  std::cout << "We demanded splitting into 8 pieces for streaming, but faked non-linearity should disable streaming."
            << std::endl;
  if (monitor->VerifyInputFilterExecutedStreaming(8))
  {
    std::cerr << "Streaming succeeded for non-linear transform which should not be the case!" << std::endl;
    std::cerr << monitor;
    std::cerr << "Test failed." << std::endl;
    return EXIT_FAILURE;
  }

  // Instead of using the default pixel when sampling outside the input image,
  // we use a nearest neighbor extrapolator.
  resample->SetTransform(affineTransform);
  resample->SetExtrapolator(extrapolator);
  writer3->SetInput(resample->GetOutput());
  std::cout << "Test with nearest neighbor extrapolator, affine transform." << std::endl;
  writer3->SetNumberOfStreamDivisions(8); // split into 8 pieces for streaming.
  ITK_TRY_EXPECT_NO_EXCEPTION(writer3->Update());

  // Instead of using the default pixel when sampling outside the input image,
  // we use a nearest neighbor extrapolator.
  resample->SetTransform(nonlinearAffineTransform);
  writer4->SetInput(resample->GetOutput());
  std::cout << "Test with nearest neighbor extrapolator, nonlinear transform." << std::endl;
  writer4->SetNumberOfStreamDivisions(
    8); // demand splitting into 8 pieces for streaming, but faked non-linearity will disable streaming
  ITK_TRY_EXPECT_NO_EXCEPTION(writer4->Update());

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}