File: itkHistogramMatchingImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (450 lines) | stat: -rw-r--r-- 16,859 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include <iomanip>
#include "itkHistogramMatchingImageFilter.h"
#include "itkCommand.h"
#include "itkTestingMacros.h"

/**
 * This file tests the functionality of the HistogramMatchingImageFilter.
 * This test uses artificial data, where we multiply different intensity
 * classes by different factors and test whether we can recover the
 * reference image.
 */

static double
refPattern(unsigned long offset)
{
  if (offset < 40)
  {
    return 5.0;
  }
  if (offset < 160)
  {
    return 10.0;
  }
  if (offset < 200)
  {
    return 15.0;
  }
  if (offset < 320)
  {
    return 20.0;
  }
  return 0.0;
}

static double
srcPattern(unsigned long offset)
{
  if (offset < 40)
  {
    return 5.0 * 1.5;
  }
  if (offset < 160)
  {
    return 10.0 * 0.9;
  }
  if (offset < 200)
  {
    return 15.0 * 1.0;
  }
  if (offset < 320)
  {
    return 20.0 * 0.8;
  }
  return 0.0;
}
namespace
{

// The following class is used to support callbacks
// on the filter in the pipeline that follows later
class ShowProgressObject
{
public:
  ShowProgressObject(itk::ProcessObject * o) { m_Process = o; }
  void
  ShowProgress()
  {
    std::cout << "Progress " << m_Process->GetProgress() << std::endl;
  }
  itk::ProcessObject::Pointer m_Process;
};
} // namespace

template <typename ImageType>
static bool
CompareImages(itk::ImageRegionIterator<ImageType> & refIter, itk::ImageRegionIterator<ImageType> & outIter)
{
  bool passed = true;
  refIter.GoToBegin();
  outIter.GoToBegin();
  while (!outIter.IsAtEnd())
  {
    typename ImageType::PixelType diff = refIter.Get() - outIter.Get();
    if (itk::Math::abs(diff) > 1)
    {
      passed = false;
      std::cout << "Test failed at: " << outIter.GetIndex() << ' ';
      std::cout << "Output value: " << outIter.Get() << ' ';
      std::cout << "Ref value: " << refIter.Get() << std::endl;
    }
    ++outIter;
    ++refIter;
  }
  return passed;
}

/**
 * Write the histogram to the console
 * @tparam HistogramType
 * @param refHistogram
 */
template <typename HistogramConstPointerType>
void
PrintHistogramInfo(HistogramConstPointerType refHistogram)
{
  std::cout << std::endl;
  std::cout << "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^" << std::endl;
  std::cout << refHistogram << std::endl;
  std::cout << "--------------------------------------------------------------------" << std::endl;

  // If the reference histogram is provided, then extract summary statistics
  // directly from the histogram.
  const auto &  allReferenceMinsByDimension = refHistogram->GetMins();              // Array of dimensions
  const auto &  allReferenceMinsFirstDimension = allReferenceMinsByDimension.at(0); // Mins for dimension 0
  const auto &  allReferenceMaxsByDimension = refHistogram->GetMaxs();              // Array of dimensions
  const auto &  allReferenceMaxsFirstDimension = allReferenceMaxsByDimension.at(0); // Maxes for dimension 0
  constexpr int colWidth = 8;
  const std::ios_base::fmtflags initial_cout_state{ std::cout.flags() };
  std::cout << std::left << std::setw(colWidth) << "INDEX" << std::left << std::setw(colWidth) << "FREQ" << std::left
            << std::setw(colWidth) << "MIN" << std::left << std::setw(colWidth) << "MAX" << std::left
            << std::setw(colWidth) << "BINSIZE" << std::endl;
  for (auto histit = refHistogram->Begin(); histit != refHistogram->End(); ++histit)
  {
    const auto histidx = histit.GetIndex()[0];
    const auto binmin = static_cast<double>(allReferenceMinsFirstDimension[histidx]);
    const auto binmax = static_cast<double>(allReferenceMaxsFirstDimension[histidx]);

    std::cout << std::left << std::setw(colWidth) << histidx << std::left << std::setw(colWidth)
              << histit.GetFrequency() << std::left << std::setw(colWidth) << binmin << std::left << std::setw(colWidth)
              << binmax << std::left << std::setw(colWidth) << binmax - binmin << std::endl;
  }
  std::cout << "\n\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^" << std::endl;
  std::cout.flags(initial_cout_state);
}

template <typename TScalar>
int
itkHistogramMatchingImageFilterTest()
{
  using PixelType = TScalar;
  constexpr unsigned int ImageDimension = 3;

  using ImageType = itk::Image<PixelType, ImageDimension>;
  using Iterator = itk::ImageRegionIterator<ImageType>;

  typename ImageType::SizeType size;
  size[0] = 30;
  size[1] = 20;
  size[2] = 2;

  typename ImageType::RegionType region;
  region.SetSize(size);

  auto reference = ImageType::New();
  auto source = ImageType::New();

  reference->SetLargestPossibleRegion(region);
  reference->SetBufferedRegion(region);
  reference->Allocate();

  // Change the origin of the reference image.
  typename ImageType::PointType origin;
  origin[0] = 1.0;
  origin[1] = 10.0;
  origin[2] = 100.0;
  reference->SetOrigin(origin);

  source->SetLargestPossibleRegion(region);
  source->SetBufferedRegion(region);
  source->Allocate();

  Iterator refIter(reference, region);
  Iterator srcIter(source, region);

  unsigned long counter = 0;

  while (!refIter.IsAtEnd())
  {
    refIter.Set(static_cast<PixelType>(refPattern(counter)));
    srcIter.Set(static_cast<PixelType>(srcPattern(counter)));

    ++refIter;
    ++srcIter;
    ++counter;
  }

  bool passed = true;
  using FilterType = itk::HistogramMatchingImageFilter<ImageType, ImageType>;
  typename FilterType::HistogramType::ConstPointer refHistogram = nullptr;


  // Test with historical reference image input, and then capture the histogram as cached
  // value for other tests
  {
    auto filterWithReferenceImage = FilterType::New();

    ITK_EXERCISE_BASIC_OBJECT_METHODS(filterWithReferenceImage, HistogramMatchingImageFilter, ImageToImageFilter);


    bool generateReferenceHistogramFromImage = true;
    ITK_TEST_SET_GET_BOOLEAN(
      filterWithReferenceImage, GenerateReferenceHistogramFromImage, generateReferenceHistogramFromImage);

    filterWithReferenceImage->SetReferenceImage(reference);
    ITK_TEST_SET_GET_VALUE(reference, filterWithReferenceImage->GetReferenceImage());

    filterWithReferenceImage->SetSourceImage(source);
    ITK_TEST_SET_GET_VALUE(source, filterWithReferenceImage->GetSourceImage());

    itk::SizeValueType numberOfHistogramLevels = 50;
    filterWithReferenceImage->SetNumberOfHistogramLevels(numberOfHistogramLevels);
    ITK_TEST_SET_GET_VALUE(numberOfHistogramLevels, filterWithReferenceImage->GetNumberOfHistogramLevels());

    itk::SizeValueType numberOfMatchPoints = 8;
    filterWithReferenceImage->SetNumberOfMatchPoints(numberOfMatchPoints);
    ITK_TEST_SET_GET_VALUE(numberOfMatchPoints, filterWithReferenceImage->GetNumberOfMatchPoints());

    ShowProgressObject                                    progressWatch(filterWithReferenceImage);
    itk::SimpleMemberCommand<ShowProgressObject>::Pointer command;
    command = itk::SimpleMemberCommand<ShowProgressObject>::New();
    command->SetCallbackFunction(&progressWatch, &ShowProgressObject::ShowProgress);
    filterWithReferenceImage->AddObserver(itk::ProgressEvent(), command);

    {
      // Exercise and test with ThresholdAtMeanIntensityOff
      bool thresholdAtMeanIntensity = false;
      ITK_TEST_SET_GET_BOOLEAN(filterWithReferenceImage, ThresholdAtMeanIntensity, thresholdAtMeanIntensity);

      filterWithReferenceImage->Update();
    }
    {
      // Exercise auxiliary functions
      std::cout << "Exercise auxiliary functions" << std::endl;

      std::cout << "Source Histogram: " << filterWithReferenceImage->GetSourceHistogram() << std::endl;
      std::cout << "Output Histogram: " << filterWithReferenceImage->GetOutputHistogram() << std::endl;
    }
    {
      // Exercise and test with ThresholdAtMeanIntensityOn
      bool thresholdAtMeanIntensity = true;
      ITK_TEST_SET_GET_BOOLEAN(filterWithReferenceImage, ThresholdAtMeanIntensity, thresholdAtMeanIntensity);

      filterWithReferenceImage->Update();

      // Walk the output and compare with reference
      Iterator outIter(filterWithReferenceImage->GetOutput(), region);
      std::cout << "filterWithReferenceImage - Image Test -- START" << std::endl;
      passed &= CompareImages(refIter, outIter);
      std::cout << "filterWithReferenceImage - Image Test -- FINISHED" << std::endl;
    }
    {
      // Get referenceHistogram for other tests
      refHistogram = filterWithReferenceImage->GetReferenceHistogram();
      PrintHistogramInfo(refHistogram);
    }
  }
  std::cout << "===================================================================================" << std::endl;
  {
    // Test SourceHistogram same size (50) as ReferenceHistogram
    auto filterWithSameSizeHistogram = FilterType::New();

    filterWithSameSizeHistogram->SetReferenceHistogram(refHistogram);
    ITK_TEST_SET_GET_VALUE(refHistogram, filterWithSameSizeHistogram->GetReferenceHistogram());

    filterWithSameSizeHistogram->GenerateReferenceHistogramFromImageOff();
    filterWithSameSizeHistogram->SetSourceImage(source);
    filterWithSameSizeHistogram->SetNumberOfHistogramLevels(50);
    filterWithSameSizeHistogram->SetNumberOfMatchPoints(8);
    filterWithSameSizeHistogram->ThresholdAtMeanIntensityOn();

    ShowProgressObject                                    progressWatchHistogramReference(filterWithSameSizeHistogram);
    itk::SimpleMemberCommand<ShowProgressObject>::Pointer commandHistogramReference;
    commandHistogramReference = itk::SimpleMemberCommand<ShowProgressObject>::New();
    commandHistogramReference->SetCallbackFunction(&progressWatchHistogramReference, &ShowProgressObject::ShowProgress);
    filterWithSameSizeHistogram->AddObserver(itk::ProgressEvent(), commandHistogramReference);

    filterWithSameSizeHistogram->ThresholdAtMeanIntensityOn();
    filterWithSameSizeHistogram->Update();

    // Walk the output and compare with reference
    Iterator outIter(filterWithSameSizeHistogram->GetOutput(), region);
    std::cout << "filterWithSameSizeHistogram - Image Test -- START" << std::endl;
    passed &= CompareImages(refIter, outIter);
    std::cout << "filterWithSameSizeHistogram - Image Test -- FINISHED" << std::endl;
  }
  // Test SourceHistogram smaller than (31) ReferenceHistogram
  {
    auto filterWithSmallerHistogram = FilterType::New();

    filterWithSmallerHistogram->SetReferenceHistogram(refHistogram);
    filterWithSmallerHistogram->SetGenerateReferenceHistogramFromImage(false);
    filterWithSmallerHistogram->SetSourceImage(source);
    filterWithSmallerHistogram->SetNumberOfHistogramLevels(31);
    filterWithSmallerHistogram->SetNumberOfMatchPoints(8);
    filterWithSmallerHistogram->ThresholdAtMeanIntensityOn();

    ShowProgressObject                                    progressWatchHistogramReference(filterWithSmallerHistogram);
    itk::SimpleMemberCommand<ShowProgressObject>::Pointer commandHistogramReference;
    commandHistogramReference = itk::SimpleMemberCommand<ShowProgressObject>::New();
    commandHistogramReference->SetCallbackFunction(&progressWatchHistogramReference, &ShowProgressObject::ShowProgress);
    filterWithSmallerHistogram->AddObserver(itk::ProgressEvent(), commandHistogramReference);

    filterWithSmallerHistogram->ThresholdAtMeanIntensityOn();
    filterWithSmallerHistogram->Update();

    // Walk the output and compare with reference
    Iterator outIter(filterWithSmallerHistogram->GetOutput(), region);
    std::cout << "filterWithSmallerHistogram - Image Test -- START" << std::endl;
    passed &= CompareImages(refIter, outIter);
    std::cout << "filterWithSmallerHistogram - Image Test -- FINISHED" << std::endl;
  }

  // Test SourceHistogram larger than (93) ReferenceHistogram
  {
    auto filterWithLargerHistogram = FilterType::New();

    filterWithLargerHistogram->SetReferenceHistogram(refHistogram);
    filterWithLargerHistogram->SetGenerateReferenceHistogramFromImage(false);
    filterWithLargerHistogram->SetSourceImage(source);
    filterWithLargerHistogram->SetNumberOfHistogramLevels(93);
    filterWithLargerHistogram->SetNumberOfMatchPoints(8);
    filterWithLargerHistogram->ThresholdAtMeanIntensityOn();

    ShowProgressObject                                    progressWatchHistogramReference(filterWithLargerHistogram);
    itk::SimpleMemberCommand<ShowProgressObject>::Pointer commandHistogramReference;
    commandHistogramReference = itk::SimpleMemberCommand<ShowProgressObject>::New();
    commandHistogramReference->SetCallbackFunction(&progressWatchHistogramReference, &ShowProgressObject::ShowProgress);
    filterWithLargerHistogram->AddObserver(itk::ProgressEvent(), commandHistogramReference);

    filterWithLargerHistogram->ThresholdAtMeanIntensityOn();
    filterWithLargerHistogram->Update();

    // Walk the output and compare with reference
    Iterator outIter(filterWithLargerHistogram->GetOutput(), region);
    std::cout << "filterWithLargerHistogram - Image Test -- START" << std::endl;
    passed &= CompareImages(refIter, outIter);
    std::cout << "filterWithLargerHistogram - Image Test -- FINISHED" << std::endl;
  }

  // Incorrect input setting failures for ReferenceHistogram
  {
    auto mismatchReferenceChoice = FilterType::New();
    try
    {
      mismatchReferenceChoice->SetReferenceHistogram(refHistogram);
      mismatchReferenceChoice->SetGenerateReferenceHistogramFromImage(true);
      mismatchReferenceChoice->SetSourceImage(source);
      mismatchReferenceChoice->SetNumberOfHistogramLevels(10);
      mismatchReferenceChoice->SetNumberOfMatchPoints(2);
      mismatchReferenceChoice->Update();
      passed = false; // We should never get here, and exception should have been thrown
      std::cout
        << "ERROR: Reached code that should have aborted due to thrown exception of missing ReferenceHistogram\n"
        << __FILE__ << ':' << __LINE__ << std::endl;
    }
    catch (const itk::ExceptionObject &)
    {
      std::cout << "Test caught known exception for SetReferenceHistogram correctly, NO FAILURE!" << std::endl;
    }
  }
  // Incorrect input setting failures for ReferenceImage
  {
    auto mismatchReferenceChoice = FilterType::New();
    try
    {
      mismatchReferenceChoice->SetReferenceImage(reference);
      mismatchReferenceChoice->SetGenerateReferenceHistogramFromImage(false);
      mismatchReferenceChoice->SetSourceImage(source);
      mismatchReferenceChoice->SetNumberOfHistogramLevels(10);
      mismatchReferenceChoice->SetNumberOfMatchPoints(2);
      mismatchReferenceChoice->Update();
      passed = false; // We should never get here, and exception should have been thrown
      std::cout << "ERROR: Reached code that should have aborted due to thrown exception of missing ReferenceImage\n"
                << __FILE__ << ':' << __LINE__ << std::endl;
    }
    catch (const itk::ExceptionObject &)
    {
      std::cout << "Test caught known exception for SetReferenceImage correctly, NO FAILURE!" << std::endl;
    }
  }

  if (!passed)
  {
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
  }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}
int
itkHistogramMatchingImageFilterTest(int, char *[])
{
  if (itkHistogramMatchingImageFilterTest<float>() != EXIT_SUCCESS)
  {
    return EXIT_FAILURE;
  }
  if (itkHistogramMatchingImageFilterTest<long>() != EXIT_SUCCESS)
  {
    return EXIT_FAILURE;
  }
  if (itkHistogramMatchingImageFilterTest<unsigned long>() != EXIT_SUCCESS)
  {
    return EXIT_FAILURE;
  }
  if (itkHistogramMatchingImageFilterTest<int>() != EXIT_SUCCESS)
  {
    return EXIT_FAILURE;
  }
  if (itkHistogramMatchingImageFilterTest<unsigned int>() != EXIT_SUCCESS)
  {
    return EXIT_FAILURE;
  }
  if (itkHistogramMatchingImageFilterTest<short>() != EXIT_SUCCESS)
  {
    return EXIT_FAILURE;
  }
  if (itkHistogramMatchingImageFilterTest<unsigned short>() != EXIT_SUCCESS)
  {
    return EXIT_FAILURE;
  }
  if (itkHistogramMatchingImageFilterTest<char>() != EXIT_SUCCESS)
  {
    return EXIT_FAILURE;
  }
  if (itkHistogramMatchingImageFilterTest<unsigned char>() != EXIT_SUCCESS)
  {
    return EXIT_FAILURE;
  }

  return EXIT_SUCCESS;
}