1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkLogicOpsFunctors.h"
#include "itkBinaryFunctorImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkLogicTestSupport.h"
int
itkLessTest(int, char *[])
{
// Define the dimension of the images
constexpr unsigned int myDimension = 3;
// Declare the types of the images
using myImageType1 = itk::Image<float, myDimension>;
using myImageType2 = itk::Image<float, myDimension>;
using myImageType3 = itk::Image<float, myDimension>;
using PixelType = myImageType1::PixelType;
// Declare the type of the index to access images
using myIndexType = itk::Index<myDimension>;
// Declare the type of the size
using mySizeType = itk::Size<myDimension>;
// Declare the type of the Region
using myRegionType = itk::ImageRegion<myDimension>;
// Declare the type for the ADD filter
using myFilterType = itk::BinaryFunctorImageFilter<
myImageType1,
myImageType2,
myImageType3,
itk::Functor::Less<myImageType1::PixelType, myImageType2::PixelType, myImageType3::PixelType>>;
// Declare the pointers to images
using myImageType1Pointer = myImageType1::Pointer;
using myImageType2Pointer = myImageType2::Pointer;
using myImageType3Pointer = myImageType3::Pointer;
using myFilterTypePointer = myFilterType::Pointer;
// Create two images
myImageType1Pointer inputImageA = myImageType1::New();
myImageType2Pointer inputImageB = myImageType2::New();
// Define their size, and start index
mySizeType size;
size[0] = 2;
size[1] = 2;
size[2] = 2;
myIndexType start;
start[0] = 0;
start[1] = 0;
start[2] = 0;
myRegionType region{ start, size };
// Initialize Image A
inputImageA->SetRegions(region);
inputImageA->Allocate();
// Initialize Image B
inputImageB->SetRegions(region);
inputImageB->Allocate();
// Declare Iterator types apropriated for each image
using myIteratorType1 = itk::ImageRegionIteratorWithIndex<myImageType1>;
using myIteratorType2 = itk::ImageRegionIteratorWithIndex<myImageType2>;
// Create one iterator for Image A (this is a light object)
myIteratorType1 it1(inputImageA, inputImageA->GetBufferedRegion());
// Initialize the content of Image A
it1.Set(3.0);
++it1;
while (!it1.IsAtEnd())
{
it1.Set(2.0);
++it1;
}
// Create one iterator for Image B (this is a light object)
myIteratorType2 it2(inputImageB, inputImageB->GetBufferedRegion());
// Initialize the content of Image B
while (!it2.IsAtEnd())
{
it2.Set(3.0);
++it2;
}
{
// Create a logic Filter
myFilterTypePointer filter = myFilterType::New();
// Connect the input images
filter->SetInput1(inputImageA);
filter->SetInput2(inputImageB);
filter->SetFunctor(filter->GetFunctor());
// Get the Smart Pointer to the Filter Output
myImageType3Pointer outputImage = filter->GetOutput();
// Execute the filter
filter->Update();
filter->SetFunctor(filter->GetFunctor());
PixelType FG = filter->GetFunctor().GetForegroundValue();
PixelType BG = filter->GetFunctor().GetBackgroundValue();
int status1 = checkImOnImRes<myImageType1, myImageType2, myImageType3, std::less<myImageType1::PixelType>>(
inputImageA, inputImageB, outputImage, FG, BG);
if (status1 == EXIT_FAILURE)
{
return (EXIT_FAILURE);
}
else
{
std::cout << "Step 1 passed" << std::endl;
}
}
{
// Create a logic Filter
myFilterTypePointer filter = myFilterType::New();
// Connect the input images
filter->SetInput1(inputImageA);
filter->SetFunctor(filter->GetFunctor());
// Get the Smart Pointer to the Filter Output
myImageType3Pointer outputImage = filter->GetOutput();
// Now try testing with constant : Im1 > 2
filter->SetConstant(2.0);
filter->Update();
PixelType FG = filter->GetFunctor().GetForegroundValue();
PixelType BG = filter->GetFunctor().GetBackgroundValue();
PixelType C = filter->GetConstant2();
int status2 = checkImOnConstRes<myImageType1, PixelType, myImageType3, std::less<PixelType>>(
inputImageA, C, outputImage, FG, BG);
if (status2 == EXIT_FAILURE)
{
return (EXIT_FAILURE);
}
else
{
std::cout << "Step 2 passed " << std::endl;
}
}
// Now try testing with constant : 3 != Im2
{
// Create a logic Filter
myFilterTypePointer filter = myFilterType::New();
// Connect the input images
filter->SetFunctor(filter->GetFunctor());
// Get the Smart Pointer to the Filter Output
myImageType3Pointer outputImage = filter->GetOutput();
filter->SetConstant1(3.0);
filter->SetInput2(inputImageB);
filter->Update();
PixelType FG = filter->GetFunctor().GetForegroundValue();
PixelType BG = filter->GetFunctor().GetBackgroundValue();
int status3 = checkConstOnImRes<PixelType, myImageType2, myImageType3, std::less<PixelType>>(
filter->GetConstant1(), inputImageB, outputImage, FG, BG);
if (status3 == EXIT_FAILURE)
{
return (EXIT_FAILURE);
}
else
{
std::cout << "Step 3 passed" << std::endl;
}
}
// All objects should be automatically destroyed at this point
return EXIT_SUCCESS;
}
|