1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <iostream>
#include "itkRescaleIntensityImageFilter.h"
#include "itkRandomImageSource.h"
#include "itkTestingMacros.h"
#include "itkUnaryFunctorImageFilter.h"
int
itkRescaleIntensityImageFilterTest(int, char *[])
{
std::cout << "itkRescaleIntensityImageFilterTest Start" << std::endl;
// Define the dimension of the images
constexpr unsigned int ImageDimension = 3;
// Declare the pixel types of the images
using PixelType = float;
// Declare the types of the images
using TestInputImage = itk::Image<PixelType, ImageDimension>;
using TestOutputImage = itk::Image<PixelType, ImageDimension>;
TestInputImage::RegionType region;
TestInputImage::SizeType size;
size.Fill(64);
TestInputImage::IndexType index;
index.Fill(0);
region.SetIndex(index);
region.SetSize(size);
using FilterType = itk::RescaleIntensityImageFilter<TestInputImage, TestOutputImage>;
auto filter = FilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, RescaleIntensityImageFilter, UnaryFunctorImageFilter);
// Now generate a real image
using SourceType = itk::RandomImageSource<TestInputImage>;
auto source = SourceType::New();
TestInputImage::SizeValueType randomSize[3] = { 17, 8, 20 };
// Set up source
source->SetSize(randomSize);
double minValue = -128.0;
double maxValue = 127.0;
source->SetMin(static_cast<TestInputImage::PixelType>(minValue));
source->SetMax(static_cast<TestInputImage::PixelType>(maxValue));
filter->SetFunctor(filter->GetFunctor());
filter->SetInput(source->GetOutput());
const double desiredMinimum = -1.0;
constexpr double desiredMaximum = 1.0;
filter->SetOutputMinimum(desiredMinimum);
ITK_TEST_SET_GET_VALUE(desiredMinimum, filter->GetOutputMinimum());
filter->SetOutputMaximum(desiredMaximum);
ITK_TEST_SET_GET_VALUE(desiredMaximum, filter->GetOutputMaximum());
ITK_TRY_EXPECT_NO_EXCEPTION(filter->UpdateLargestPossibleRegion());
using CalculatorType = itk::MinimumMaximumImageCalculator<TestOutputImage>;
auto calculator = CalculatorType::New();
calculator->SetImage(filter->GetOutput());
calculator->Compute();
const double tolerance = 1e-7;
const double obtainedMinimum = calculator->GetMinimum();
const double obtainedMaximum = calculator->GetMaximum();
if (!itk::Math::FloatAlmostEqual(obtainedMinimum, desiredMinimum, 10, tolerance))
{
std::cerr << "Error in minimum" << std::endl;
std::cerr << "Expected minimum = " << desiredMinimum << std::endl;
std::cerr << "Obtained minimum = " << obtainedMinimum << std::endl;
return EXIT_FAILURE;
}
if (!itk::Math::FloatAlmostEqual(obtainedMaximum, desiredMaximum, 10, tolerance))
{
std::cerr << "Error in minimum" << std::endl;
std::cerr << "Expected minimum = " << desiredMaximum << std::endl;
std::cerr << "Obtained minimum = " << obtainedMaximum << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test PASSED ! " << std::endl;
return EXIT_SUCCESS;
}
|