1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkCastImageFilter.h"
#include "itkImageFileWriter.h"
#include "itkSymmetricSecondRankTensor.h"
#include "itkSymmetricEigenAnalysisImageFilter.h"
#include "itkTestingMacros.h"
#include "itkImageRegionIterator.h"
/**
* Function to convert image of double precison vector pixels to a
* representation of scalar values that are easy to view and test.
* NOTE: Similar function in itkBSplineScatteredDataPointSetToImageFilterTest5.cxx
*/
template <typename InternalImageType>
static void
makeTestableScalarImage(typename InternalImageType::Pointer internalImage, std::string outputFilename)
{ // using OutputPixelType = unsigned char;
using OutputPixelType = uint8_t;
using OutputImageType = itk::Image<OutputPixelType, 3>;
OutputImageType::Pointer outputImage = OutputImageType::New();
outputImage->CopyInformation(internalImage);
outputImage->SetRegions(internalImage->GetBufferedRegion());
outputImage->AllocateInitialized();
auto myiterator = itk::ImageRegionConstIterator<InternalImageType>(internalImage, internalImage->GetBufferedRegion());
auto myOutiterator = itk::ImageRegionIterator<OutputImageType>(outputImage, outputImage->GetBufferedRegion());
// Convert vector image to magnitude and scale to use range of png values
float max_magnitude_value = 0.0;
while (!myiterator.IsAtEnd())
{
const auto arr = myiterator.Get();
const auto magvalue = std::sqrt(arr[0] * arr[0] + arr[1] * arr[1] + arr[2] * arr[2]);
max_magnitude_value = std::max<float>(max_magnitude_value, magvalue);
++myiterator;
}
const float scale_factor = 255.0 / ceil(max_magnitude_value);
myOutiterator.GoToBegin();
myiterator.GoToBegin();
while (!myOutiterator.IsAtEnd())
{
// Convert vector image to magnitude and scale to use range of png values
const auto arr = myiterator.Get();
const auto magvalue = std::sqrt(arr[0] * arr[0] + arr[1] * arr[1] + arr[2] * arr[2]);
myOutiterator.Set(magvalue * scale_factor);
++myiterator;
++myOutiterator;
}
// Write the result image
using WriterType = itk::ImageFileWriter<OutputImageType>;
auto writer = WriterType::New();
writer->SetFileName(outputFilename);
writer->SetInput(outputImage);
writer->Update();
}
namespace itk
{
template <typename TInputImage, typename TInternalImage, typename TOutputImage>
class SymmetricEigenAnalysisImageFilterHelper : public SymmetricEigenAnalysisImageFilter<TInputImage, TInternalImage>
{
public:
using Self = SymmetricEigenAnalysisImageFilterHelper;
using Superclass = SymmetricEigenAnalysisImageFilter<TInputImage, TInternalImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using InputImageType = TInputImage;
using InternalImageType = TInternalImage;
itkOverrideGetNameOfClassMacro(SymmetricEigenAnalysisImageFilterHelper);
itkNewMacro(Self);
static int
Exercise(itk::EigenValueOrderEnum order, std::string outputFilename)
{
using SymmetricEigenAnalysisImageFilterType = SymmetricEigenAnalysisImageFilter<InputImageType, InternalImageType>;
// Declare the type of the index to access images
using IndexType = itk::Index<InputImageType::ImageDimension>;
// Declare the type of the size
using SizeType = itk::Size<InputImageType::ImageDimension>;
// Declare the type of the Region
using RegionType = itk::ImageRegion<InputImageType::ImageDimension>;
// Create the input image
auto inputImage = InputImageType::New();
// Define its size, and start index
SizeType size;
size[0] = 8;
size[1] = 8;
size[2] = 8;
IndexType start;
start.Fill(0);
RegionType region;
region.SetIndex(start);
region.SetSize(size);
// Initialize the input image
inputImage->SetRegions(region);
inputImage->Allocate();
// Declare Iterator type for the input image
using IteratorType = itk::ImageRegionIteratorWithIndex<InputImageType>;
typename InputImageType::PixelType tensorValue;
tensorValue(0, 0) = 19.0;
tensorValue(0, 1) = 23.0;
tensorValue(0, 2) = 29.0;
tensorValue(1, 1) = 31.0;
tensorValue(1, 2) = 37.0;
tensorValue(2, 2) = 39.0;
// Create one iterator for the input image (this is a light object)
IteratorType it(inputImage, inputImage->GetRequestedRegion());
// Initialize the content of the input image
while (!it.IsAtEnd())
{
it.Set(tensorValue);
++it;
}
// Create the filter
auto filter = SymmetricEigenAnalysisImageFilterType::New();
// Dimension should be initialized to the input image dimension
ITK_TEST_EXPECT_EQUAL(filter->GetDimension(), InputImageType::ImageDimension);
ITK_TEST_SET_GET_VALUE(InputImageType::ImageDimension, filter->GetDimension());
// Set the input image
filter->SetInput(inputImage);
filter->SetFunctor(filter->GetFunctor());
filter->OrderEigenValuesBy(order);
filter->SetOrderEigenValuesBy(order);
ITK_TEST_SET_GET_VALUE(order, filter->GetOrderEigenValuesBy());
// Execute the filter
ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());
// Get the filter output
// It is important to do it AFTER the filter is Updated
// Because the object connected to the output may be changed
// by another during GenerateData() call
typename InternalImageType::Pointer internalImage = filter->GetOutput();
ITK_TRY_EXPECT_NO_EXCEPTION(makeTestableScalarImage<InternalImageType>(internalImage, outputFilename));
std::cout << "Test succeeded." << std::endl;
return EXIT_SUCCESS;
}
};
template <unsigned int TMatrixDimension, typename TInputImage, typename TInternalImage, typename TOutputImage>
class SymmetricEigenAnalysisFixedDimensionImageFilterHelper
: public SymmetricEigenAnalysisFixedDimensionImageFilter<TMatrixDimension, TInputImage, TInternalImage>
{
public:
using Self = SymmetricEigenAnalysisFixedDimensionImageFilterHelper;
using Superclass = SymmetricEigenAnalysisFixedDimensionImageFilter<TMatrixDimension, TInputImage, TInternalImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using InputImageType = TInputImage;
using InternalImageType = TInternalImage;
using OutputImageType = TOutputImage;
itkOverrideGetNameOfClassMacro(SymmetricEigenAnalysisFixedDimensionImageFilterHelper);
itkNewMacro(Self);
static int
Exercise(itk::EigenValueOrderEnum order, std::string outputFilename)
{
using SymmetricEigenAnalysisFixedDimensionImageFilterType =
SymmetricEigenAnalysisFixedDimensionImageFilter<TMatrixDimension, InputImageType, InternalImageType>;
// Declare the type of the index to access images
using IndexType = itk::Index<InputImageType::ImageDimension>;
// Declare the type of the size
using SizeType = itk::Size<InputImageType::ImageDimension>;
// Declare the type of the Region
using RegionType = itk::ImageRegion<InputImageType::ImageDimension>;
// Create the input image
auto inputImage = InputImageType::New();
// Define its size, and start index
SizeType size;
size[0] = 8;
size[1] = 8;
size[2] = 8;
IndexType start;
start.Fill(0);
RegionType region;
region.SetIndex(start);
region.SetSize(size);
// Initialize the input image
inputImage->SetRegions(region);
inputImage->Allocate();
// Declare Iterator type for the input image
using IteratorType = itk::ImageRegionIteratorWithIndex<InputImageType>;
typename InputImageType::PixelType tensorValue;
tensorValue(0, 0) = 19.0;
tensorValue(0, 1) = 23.0;
tensorValue(0, 2) = 29.0;
tensorValue(1, 1) = 31.0;
tensorValue(1, 2) = 37.0;
tensorValue(2, 2) = 39.0;
// Create one iterator for the input image (this is a light object)
IteratorType it(inputImage, inputImage->GetRequestedRegion());
// Initialize the content of the input image
while (!it.IsAtEnd())
{
it.Set(tensorValue);
++it;
}
// Create the filter
typename SymmetricEigenAnalysisFixedDimensionImageFilterType::Pointer filter =
SymmetricEigenAnalysisFixedDimensionImageFilterType::New();
// Set the input image
filter->SetInput(inputImage);
filter->SetFunctor(filter->GetFunctor());
filter->OrderEigenValuesBy(order);
// Execute the filter
ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());
// Get the filter output
// It is important to do it AFTER the filter is Updated
// Because the object connected to the output may be changed
// by another during GenerateData() call
typename InternalImageType::Pointer internalImage = filter->GetOutput();
ITK_TRY_EXPECT_NO_EXCEPTION(makeTestableScalarImage<InternalImageType>(internalImage, outputFilename));
std::cout << "Test succeeded." << std::endl;
return EXIT_SUCCESS;
}
};
} // end namespace itk
int
itkSymmetricEigenAnalysisImageFilterTest(int argc, char * argv[])
{
if (argc < 4)
{
std::cout << "Usage: " << itkNameOfTestExecutableMacro(argv) << "outputImage order outputImageFixedDimension"
<< std::endl;
return EXIT_FAILURE;
}
bool testPassed = true;
// Define the dimension of the images
constexpr unsigned int Dimension = 3;
// Declare the pixel type
using InputPixelType = float;
using InternalPixelType = double;
using OutputPixelType = unsigned char;
// Define the symmetric tensor pixel type
using TensorType = itk::SymmetricSecondRankTensor<InputPixelType, Dimension>;
// Declare the types of the images
using InputImageType = itk::Image<TensorType, Dimension>;
// Define the type for storing the eigen-value
using InternalValueArray = itk::FixedArray<InternalPixelType, Dimension>;
using OutputValueArray = itk::FixedArray<OutputPixelType, Dimension>;
// Declare the types of the output images
using InternalImageType = itk::Image<InternalValueArray, Dimension>;
using OutputImageType = itk::Image<OutputValueArray, Dimension>;
// Declare the type for the filter
using FilterType = itk::SymmetricEigenAnalysisImageFilter<InputImageType, InternalImageType>;
// Create an instance to exercise basic object methods
auto filter = FilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, SymmetricEigenAnalysisImageFilter, UnaryFunctorImageFilter);
// Get the input arguments
auto order = static_cast<itk::EigenValueOrderEnum>(std::stoi(argv[2]));
const std::string outputFilename = argv[1];
// Test the filter
int testResult =
itk::SymmetricEigenAnalysisImageFilterHelper<InputImageType, InternalImageType, OutputImageType>::Exercise(
order, outputFilename);
if (testResult != EXIT_SUCCESS)
{
std::cout << "test SymmetricEigenAnalysisImageFilter failed" << std::endl;
testPassed = false;
}
// Test the fixed dimension filter
using FilterFixedDimensionType =
itk::SymmetricEigenAnalysisFixedDimensionImageFilter<Dimension, InputImageType, InternalImageType>;
auto orderFixedDimension = static_cast<itk::EigenValueOrderEnum>(std::stoi(argv[2]));
const std::string outputFilenameFixedDimension = argv[3];
// Create an instance to exercise basic object methods
auto filterFixedDimension = FilterFixedDimensionType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(
filterFixedDimension, SymmetricEigenAnalysisFixedDimensionImageFilter, UnaryFunctorImageFilter);
int testFixedDimensionResult =
itk::SymmetricEigenAnalysisFixedDimensionImageFilterHelper<Dimension,
InputImageType,
InternalImageType,
OutputImageType>::Exercise(orderFixedDimension,
outputFilenameFixedDimension);
if (testFixedDimensionResult != EXIT_SUCCESS)
{
std::cout << "test SymmetricEigenAnalysisFixedImageImageFilter failed" << std::endl;
testPassed = false;
}
// All objects should be automatically destroyed at this point
if (testPassed)
{
return EXIT_SUCCESS;
}
else
{
return EXIT_FAILURE;
}
}
|