File: itkTernaryMagnitudeSquaredImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (170 lines) | stat: -rw-r--r-- 5,165 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkTernaryMagnitudeSquaredImageFilter.h"
#include "itkTestingMacros.h"


int
itkTernaryMagnitudeSquaredImageFilterTest(int, char *[])
{

  // Define the dimension of the images
  constexpr unsigned int Dimension = 3;

  // Declare the pixel types of the images
  using PixelType = float;

  // Declare the types of the images
  using InputImageType1 = itk::Image<PixelType, Dimension>;
  using InputImageType2 = itk::Image<PixelType, Dimension>;
  using InputImageType3 = itk::Image<PixelType, Dimension>;
  using OutputImageType = itk::Image<PixelType, Dimension>;

  // Declare the type of the index to access images
  using IndexType = itk::Index<Dimension>;

  // Declare the type of the size
  using SizeType = itk::Size<Dimension>;

  // Declare the type of the Region
  using RegionType = itk::ImageRegion<Dimension>;

  // Create the input images
  auto inputImageA = InputImageType1::New();
  auto inputImageB = InputImageType2::New();
  auto inputImageC = InputImageType3::New();

  // Define their size, and start index
  SizeType size;
  size[0] = 2;
  size[1] = 2;
  size[2] = 2;

  IndexType start;
  start[0] = 0;
  start[1] = 0;
  start[2] = 0;

  RegionType region;
  region.SetIndex(start);
  region.SetSize(size);

  // Initialize Image A
  inputImageA->SetRegions(region);
  inputImageA->Allocate();

  // Initialize Image B
  inputImageB->SetRegions(region);
  inputImageB->Allocate();

  // Initialize Image C
  inputImageC->SetRegions(region);
  inputImageC->Allocate();

  // Declare appropriate Iterator types for each image
  using InputImage1IteratorType = itk::ImageRegionIteratorWithIndex<InputImageType1>;
  using InputImage2IteratorType = itk::ImageRegionIteratorWithIndex<InputImageType2>;
  using InputImage3IteratorType = itk::ImageRegionIteratorWithIndex<InputImageType3>;
  using OutputImageIteratorType = itk::ImageRegionIteratorWithIndex<OutputImageType>;

  // Create one iterator for Image A (this is a light object)
  InputImage1IteratorType it1(inputImageA, inputImageA->GetBufferedRegion());

  // Initialize the content of Image A
  constexpr InputImageType1::PixelType valueA = 2.0;
  while (!it1.IsAtEnd())
  {
    it1.Set(valueA);
    ++it1;
  }

  // Create one iterator for Image B (this is a light object)
  InputImage2IteratorType it2(inputImageB, inputImageB->GetBufferedRegion());

  // Initialize the content of Image B
  constexpr InputImageType2::PixelType valueB = 3.0;
  while (!it2.IsAtEnd())
  {
    it2.Set(valueB);
    ++it2;
  }

  // Create one iterator for Image C (this is a light object)
  InputImage3IteratorType it3(inputImageC, inputImageC->GetBufferedRegion());

  // Initialize the content of Image C
  constexpr InputImageType3::PixelType valueC = 4.0;
  while (!it3.IsAtEnd())
  {
    it3.Set(valueC);
    ++it3;
  }


  // Declare the type for the TernaryMagnitudeSquaredImageFilter
  using FilterType =
    itk::TernaryMagnitudeSquaredImageFilter<InputImageType1, InputImageType2, InputImageType3, OutputImageType>;


  // Create the filter
  auto filter = FilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, TernaryMagnitudeSquaredImageFilter, TernaryGeneratorImageFilter);

  // Set the input images
  filter->SetInput1(inputImageA);
  filter->SetInput2(inputImageB);
  filter->SetInput3(inputImageC);

  // Execute the filter
  filter->Update();

  // Get the filter output
  OutputImageType::Pointer outputImage = filter->GetOutput();

  // Create an iterator for going through the image output
  OutputImageIteratorType oIt(outputImage, outputImage->GetBufferedRegion());

  // Check the content of the result image
  const float epsilon = 1e-6;
  oIt.GoToBegin();
  it1.GoToBegin();
  it2.GoToBegin();
  it3.GoToBegin();
  while (!oIt.IsAtEnd())
  {
    auto outputValue =
      static_cast<OutputImageType::PixelType>(it1.Get() * it1.Get() + it2.Get() * it2.Get() + it3.Get() * it3.Get());
    if (!itk::Math::FloatAlmostEqual(oIt.Get(), outputValue, 10, epsilon))
    {
      std::cerr.precision(static_cast<int>(itk::Math::abs(std::log10(epsilon))));
      std::cerr << "Error " << std::endl;
      std::cerr << "Value should be  " << outputValue << std::endl;
      std::cerr << "but is           " << oIt.Get() << std::endl;
      return EXIT_FAILURE;
    }
    ++oIt;
    ++it1;
    ++it2;
    ++it3;
  }

  // All objects should be automatically destroyed at this point
  return EXIT_SUCCESS;
}