1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkAdditiveGaussianNoiseImageFilter_hxx
#define itkAdditiveGaussianNoiseImageFilter_hxx
#include "itkBitCast.h"
#include "itkImageScanlineIterator.h"
#include "itkTotalProgressReporter.h"
#include "itkNormalVariateGenerator.h"
namespace itk
{
template <class TInputImage, class TOutputImage>
AdditiveGaussianNoiseImageFilter<TInputImage, TOutputImage>::AdditiveGaussianNoiseImageFilter()
{
this->DynamicMultiThreadingOff();
this->ThreaderUpdateProgressOff();
}
template <class TInputImage, class TOutputImage>
void
AdditiveGaussianNoiseImageFilter<TInputImage, TOutputImage>::ThreadedGenerateData(
const OutputImageRegionType & outputRegionForThread,
ThreadIdType)
{
const InputImageType * inputPtr = this->GetInput();
OutputImageType * outputPtr = this->GetOutput(0);
TotalProgressReporter progress(this, outputPtr->GetRequestedRegion().GetNumberOfPixels());
// Create a random generator per thread
IndexValueType indSeed = 0;
for (unsigned int d = 0; d < TOutputImage::ImageDimension; ++d)
{
indSeed += outputRegionForThread.GetIndex(d);
}
typename Statistics::NormalVariateGenerator::Pointer randn = Statistics::NormalVariateGenerator::New();
const uint32_t seed = Self::Hash(this->GetSeed(), uint32_t(indSeed));
// Convert the seed bit for bit to int32_t
randn->Initialize(bit_cast<int32_t>(seed));
// Define the portion of the input to walk for this thread, using
// the CallCopyOutputRegionToInputRegion method allows for the input
// and output images to be different dimensions
InputImageRegionType inputRegionForThread;
this->CallCopyOutputRegionToInputRegion(inputRegionForThread, outputRegionForThread);
// Define the iterators
ImageScanlineConstIterator inputIt(inputPtr, inputRegionForThread);
ImageScanlineIterator outputIt(outputPtr, outputRegionForThread);
while (!inputIt.IsAtEnd())
{
while (!inputIt.IsAtEndOfLine())
{
const double out = inputIt.Get() + m_Mean + m_StandardDeviation * randn->GetVariate();
outputIt.Set(Self::ClampCast(out));
++inputIt;
++outputIt;
}
inputIt.NextLine();
outputIt.NextLine();
progress.Completed(outputRegionForThread.GetSize()[0]);
}
}
template <class TInputImage, class TOutputImage>
void
AdditiveGaussianNoiseImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Mean: " << static_cast<typename NumericTraits<double>::PrintType>(m_Mean) << std::endl;
os << indent << "StandardDeviation: " << static_cast<typename NumericTraits<double>::PrintType>(m_StandardDeviation)
<< std::endl;
}
} // end namespace itk
#endif
|