File: itkGaussianImageSource.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (130 lines) | stat: -rw-r--r-- 4,021 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkGaussianImageSource_hxx
#define itkGaussianImageSource_hxx

#include "itkGaussianSpatialFunction.h"
#include "itkImageRegionIterator.h"
#include "itkProgressReporter.h"
#include "itkObjectFactory.h"

namespace itk
{

template <typename TOutputImage>
GaussianImageSource<TOutputImage>::GaussianImageSource()

{
  // Gaussian parameters, defined so that the Gaussian
  // is centered in the default image
  m_Mean.Fill(32.0);
  m_Sigma.Fill(16.0);
}

template <typename TOutputImage>
void
GaussianImageSource<TOutputImage>::SetParameters(const ParametersType & parameters)
{
  ArrayType sigma;
  ArrayType mean;
  for (unsigned int i = 0; i < ArrayType::Length; ++i)
  {
    sigma[i] = parameters[i];
    mean[i] = parameters[i + ArrayType::Length];
  }
  this->SetSigma(sigma);
  this->SetMean(mean);

  const double scale = parameters[2 * ArrayType::Length];
  this->SetScale(scale);
}

template <typename TOutputImage>
auto
GaussianImageSource<TOutputImage>::GetParameters() const -> ParametersType
{
  ParametersType parameters(2 * ArrayType::Length + 1);
  for (unsigned int i = 0; i < ArrayType::Length; ++i)
  {
    parameters[i] = m_Sigma[i];
    parameters[i + ArrayType::Length] = m_Mean[i];
  }
  parameters[2 * ArrayType::Length] = m_Scale;

  return parameters;
}

template <typename TOutputImage>
unsigned int
GaussianImageSource<TOutputImage>::GetNumberOfParameters() const
{
  return 2 * ArrayType::Length + 1;
}

template <typename TOutputImage>
void
GaussianImageSource<TOutputImage>::GenerateData()
{
  TOutputImage * outputPtr = this->GetOutput();

  // Allocate the output buffer
  outputPtr->SetBufferedRegion(outputPtr->GetRequestedRegion());
  outputPtr->Allocate();

  // Create and initialize a new Gaussian function
  using FunctionType = GaussianSpatialFunction<double, NDimensions>;
  auto gaussian = FunctionType::New();

  gaussian->SetSigma(m_Sigma);
  gaussian->SetMean(m_Mean);
  gaussian->SetScale(m_Scale);
  gaussian->SetNormalized(m_Normalized);

  // Create an iterator that will walk the output region
  using OutputIterator = ImageRegionIterator<TOutputImage>;

  ProgressReporter progress(this, 0, outputPtr->GetRequestedRegion().GetNumberOfPixels());
  // Walk the output image, evaluating the spatial function at each pixel
  for (OutputIterator outIt(outputPtr, outputPtr->GetRequestedRegion()); !outIt.IsAtEnd(); ++outIt)
  {
    const typename TOutputImage::IndexType index = outIt.GetIndex();
    // The position at which the function is evaluated
    typename FunctionType::InputType evalPoint;
    outputPtr->TransformIndexToPhysicalPoint(index, evalPoint);
    const double value = gaussian->Evaluate(evalPoint);

    // Set the pixel value to the function value
    outIt.Set(static_cast<typename TOutputImage::PixelType>(value));
    progress.CompletedPixel();
  }
}

template <typename TOutputImage>
void
GaussianImageSource<TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Mean: " << m_Mean << std::endl;
  os << indent << "Sigma: " << m_Sigma << std::endl;
  os << indent << "Scale: " << m_Scale << std::endl;
  os << indent << "Normalized: " << (m_Normalized ? "On" : "Off") << std::endl;
}
} // end namespace itk

#endif