File: itkAdaptiveEqualizationHistogram.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (162 lines) | stat: -rw-r--r-- 3,752 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkAdaptiveEqualizationHistogram_h
#define itkAdaptiveEqualizationHistogram_h

#include <unordered_map>
#include "itkStructHashFunction.h"
#include "itkMath.h"
#include <cmath>
namespace itk
{
namespace Function
{

/* \class AdaptiveEqualizationHistogram
 *
 * Implements the function class for a moving histogram algorithm for
 * adaptive histogram equalization.
 *
 * \sa AdaptiveHistogramEqualizationImageFilter
 * \sa MovingHistogramImageFilter
 * \ingroup ITKImageStatistics
 */
template <class TInputPixel, class TOutputPixel>
class AdaptiveEqualizationHistogram
{
public:
  using RealType = float;

  AdaptiveEqualizationHistogram() = default;

  // ~AdaptiveEqualizationHistogram()  {} default is ok

  void
  AddPixel(const TInputPixel & p)
  {
    m_Map[p]++;
  }

  void
  RemovePixel(const TInputPixel & p)
  {

    // insert new item if one doesn't exist
    auto it = m_Map.find(p);

    itkAssertInDebugAndIgnoreInReleaseMacro(it != m_Map.end());

    if (--(it->second) == 0)
    {
      m_Map.erase(it);
    }
  }

  TOutputPixel
  GetValue(const TInputPixel & pixel)
  {

    // Normalize input pixels to [-0.5 0.5] gray level.
    // AdaptiveHistogramEqualization compute kernel components with
    // float, but use double for accumulate and temporaries.
    const double iscale = static_cast<double>(m_Maximum) - m_Minimum;

    double         sum = 0.0;
    auto           itMap = m_Map.begin();
    const RealType u = (static_cast<double>(pixel) - m_Minimum) / iscale - 0.5;
    while (itMap != m_Map.end())
    {
      const RealType v = (static_cast<double>(itMap->first) - m_Minimum) / iscale - 0.5;
      const double   ikernel = m_KernelSize - m_BoundaryCount;
      sum += itMap->second * CumulativeFunction(u, v) / ikernel;

      ++itMap;
    }

    return (TOutputPixel)(iscale * (sum + 0.5) + m_Minimum);
  }

  void
  AddBoundary()
  {
    ++m_BoundaryCount;
  }

  void
  RemoveBoundary()
  {
    --m_BoundaryCount;
  }

  void
  SetAlpha(RealType alpha)
  {
    m_Alpha = alpha;
  }
  void
  SetBeta(RealType beta)
  {
    m_Beta = beta;
  }
  void
  SetKernelSize(RealType kernelSize)
  {
    m_KernelSize = kernelSize;
  }

  void
  SetMinimum(TInputPixel minimum)
  {
    m_Minimum = minimum;
  }
  void
  SetMaximum(TInputPixel maximum)
  {
    m_Maximum = maximum;
  }

private:
  RealType m_Alpha{};
  RealType m_Beta{};
  RealType m_KernelSize{};

  TInputPixel m_Minimum;
  TInputPixel m_Maximum;

  RealType
  CumulativeFunction(RealType u, RealType v)
  {
    // Calculate cumulative function
    const RealType s = itk::Math::sgn(u - v);
    const RealType ad = itk::Math::abs(2.0 * (u - v));

    return 0.5 * s * std::pow(ad, m_Alpha) - m_Beta * 0.5 * s * ad + m_Beta * u;
  }

private:
  using MapType = typename std::unordered_map<TInputPixel, size_t, StructHashFunction<TInputPixel>>;


  MapType m_Map;
  size_t  m_BoundaryCount{ 0 };
};

} // end namespace Function
} // end namespace itk

#endif // itkAdaptiveHistogramHistogram_h