1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkAdaptiveEqualizationHistogram_h
#define itkAdaptiveEqualizationHistogram_h
#include <unordered_map>
#include "itkStructHashFunction.h"
#include "itkMath.h"
#include <cmath>
namespace itk
{
namespace Function
{
/* \class AdaptiveEqualizationHistogram
*
* Implements the function class for a moving histogram algorithm for
* adaptive histogram equalization.
*
* \sa AdaptiveHistogramEqualizationImageFilter
* \sa MovingHistogramImageFilter
* \ingroup ITKImageStatistics
*/
template <class TInputPixel, class TOutputPixel>
class AdaptiveEqualizationHistogram
{
public:
using RealType = float;
AdaptiveEqualizationHistogram() = default;
// ~AdaptiveEqualizationHistogram() {} default is ok
void
AddPixel(const TInputPixel & p)
{
m_Map[p]++;
}
void
RemovePixel(const TInputPixel & p)
{
// insert new item if one doesn't exist
auto it = m_Map.find(p);
itkAssertInDebugAndIgnoreInReleaseMacro(it != m_Map.end());
if (--(it->second) == 0)
{
m_Map.erase(it);
}
}
TOutputPixel
GetValue(const TInputPixel & pixel)
{
// Normalize input pixels to [-0.5 0.5] gray level.
// AdaptiveHistogramEqualization compute kernel components with
// float, but use double for accumulate and temporaries.
const double iscale = static_cast<double>(m_Maximum) - m_Minimum;
double sum = 0.0;
auto itMap = m_Map.begin();
const RealType u = (static_cast<double>(pixel) - m_Minimum) / iscale - 0.5;
while (itMap != m_Map.end())
{
const RealType v = (static_cast<double>(itMap->first) - m_Minimum) / iscale - 0.5;
const double ikernel = m_KernelSize - m_BoundaryCount;
sum += itMap->second * CumulativeFunction(u, v) / ikernel;
++itMap;
}
return (TOutputPixel)(iscale * (sum + 0.5) + m_Minimum);
}
void
AddBoundary()
{
++m_BoundaryCount;
}
void
RemoveBoundary()
{
--m_BoundaryCount;
}
void
SetAlpha(RealType alpha)
{
m_Alpha = alpha;
}
void
SetBeta(RealType beta)
{
m_Beta = beta;
}
void
SetKernelSize(RealType kernelSize)
{
m_KernelSize = kernelSize;
}
void
SetMinimum(TInputPixel minimum)
{
m_Minimum = minimum;
}
void
SetMaximum(TInputPixel maximum)
{
m_Maximum = maximum;
}
private:
RealType m_Alpha{};
RealType m_Beta{};
RealType m_KernelSize{};
TInputPixel m_Minimum;
TInputPixel m_Maximum;
RealType
CumulativeFunction(RealType u, RealType v)
{
// Calculate cumulative function
const RealType s = itk::Math::sgn(u - v);
const RealType ad = itk::Math::abs(2.0 * (u - v));
return 0.5 * s * std::pow(ad, m_Alpha) - m_Beta * 0.5 * s * ad + m_Beta * u;
}
private:
using MapType = typename std::unordered_map<TInputPixel, size_t, StructHashFunction<TInputPixel>>;
MapType m_Map;
size_t m_BoundaryCount{ 0 };
};
} // end namespace Function
} // end namespace itk
#endif // itkAdaptiveHistogramHistogram_h
|