File: itkLabelStatisticsImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (431 lines) | stat: -rw-r--r-- 13,994 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkLabelStatisticsImageFilter_h
#define itkLabelStatisticsImageFilter_h

#include "itkImageSink.h"
#include "itkNumericTraits.h"
#include "itkSimpleDataObjectDecorator.h"
#include "itkHistogram.h"
#include "itkPrintHelper.h"
#include <mutex>
#include <unordered_map>
#include <vector>

namespace itk
{
/** \class LabelStatisticsImageFilter
 * \brief Given an intensity image and a label map, compute min, max, variance and mean of the pixels associated with
 * each label or segment
 *
 * LabelStatisticsImageFilter computes the minimum, maximum, sum,
 * mean, median, variance and sigma of regions of an intensity image, where
 * the regions are defined via a label map (a second input).  The
 * label image should be integral type. The filter needs all of its
 * input image.  It behaves as a filter with an input and output. Thus
 * it can be inserted in a pipeline with other filters and the
 * statistics will only be recomputed if a downstream filter changes.
 *
 * Optionally, the filter also computes intensity histograms on each
 * object. If histograms are enabled, a median intensity value can
 * also be computed, although its accuracy is limited to the bin width
 * of the histogram. If histograms are not enabled, the median returns
 * zero.
 *
 * This filter is automatically multi-threaded and can stream its
 * input when NumberOfStreamDivisions is set to more than
 * 1. Statistics are independently computed for each streamed and
 * threaded region then merged.
 *
 * \ingroup MathematicalStatisticsImageFilters
 * \ingroup ITKImageStatistics
 *
 * \sphinx
 * \sphinxexample{Filtering/ImageStatistics/StatisticalPropertiesOfRegions,Statistical Properties Of Labeled Regions}
 * \endsphinx
 */
template <typename TInputImage, typename TLabelImage>
class ITK_TEMPLATE_EXPORT LabelStatisticsImageFilter : public ImageSink<TInputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(LabelStatisticsImageFilter);

  /** Standard Self type alias */
  using Self = LabelStatisticsImageFilter;
  using Superclass = ImageSink<TInputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(LabelStatisticsImageFilter);

  /** Image related type alias. */
  using InputImagePointer = typename TInputImage::Pointer;
  using RegionType = typename TInputImage::RegionType;
  using SizeType = typename TInputImage::SizeType;
  using IndexType = typename TInputImage::IndexType;
  using PixelType = typename TInputImage::PixelType;

  /** Label image related type alias. */
  using LabelImageType = TLabelImage;
  using LabelImagePointer = typename TLabelImage::Pointer;
  using LabelRegionType = typename TLabelImage::RegionType;
  using LabelSizeType = typename TLabelImage::SizeType;
  using LabelIndexType = typename TLabelImage::IndexType;
  using LabelPixelType = typename TLabelImage::PixelType;

  /** Image related type alias. */
  static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;

  /** Type to use for computations. */
  using RealType = typename NumericTraits<PixelType>::RealType;

  /** Smart Pointer type to a DataObject. */
  using DataObjectPointer = typename DataObject::Pointer;

  /** Type of DataObjects used for scalar outputs */
  using RealObjectType = SimpleDataObjectDecorator<RealType>;

  /** Bounding Box-related type alias */
  using BoundingBoxType = std::vector<IndexValueType>;

  /** Histogram-related type alias */
  using HistogramType = itk::Statistics::Histogram<RealType>;
  using HistogramPointer = typename HistogramType::Pointer;

  /** \class LabelStatistics
   * \brief Statistics stored per label
   * \ingroup ITKImageStatistics
   */
  class LabelStatistics
  {
  public:
    // default constructor
    LabelStatistics()
    {
      // initialized to the default values
      m_Count = IdentifierType{};
      m_Sum = RealType{};
      m_SumOfSquares = RealType{};

      // Set such that the first pixel encountered can be compared
      m_Minimum = NumericTraits<RealType>::max();
      m_Maximum = NumericTraits<RealType>::NonpositiveMin();

      // Default these to zero
      m_Mean = RealType{};
      m_Sigma = RealType{};
      m_Variance = RealType{};

      const unsigned int imageDimension = Self::ImageDimension;
      m_BoundingBox.resize(imageDimension * 2);
      for (unsigned int i = 0; i < imageDimension * 2; i += 2)
      {
        m_BoundingBox[i] = NumericTraits<IndexValueType>::max();
        m_BoundingBox[i + 1] = NumericTraits<IndexValueType>::NonpositiveMin();
      }
      m_Histogram = nullptr;
    }

    // constructor with histogram enabled
    LabelStatistics(int size, RealType lowerBound, RealType upperBound)
    {
      // initialized to the default values
      m_Count = IdentifierType{};
      m_Sum = RealType{};
      m_SumOfSquares = RealType{};

      // Set such that the first pixel encountered can be compared
      m_Minimum = NumericTraits<RealType>::max();
      m_Maximum = NumericTraits<RealType>::NonpositiveMin();

      // Default these to zero
      m_Mean = RealType{};
      m_Sigma = RealType{};
      m_Variance = RealType{};

      const unsigned int imageDimension = Self::ImageDimension;
      m_BoundingBox.resize(imageDimension * 2);
      for (unsigned int i = 0; i < imageDimension * 2; i += 2)
      {
        m_BoundingBox[i] = NumericTraits<IndexValueType>::max();
        m_BoundingBox[i + 1] = NumericTraits<IndexValueType>::NonpositiveMin();
      }

      // Histogram
      m_Histogram = HistogramType::New();
      typename HistogramType::SizeType              hsize;
      typename HistogramType::MeasurementVectorType lb;
      typename HistogramType::MeasurementVectorType ub;
      hsize.SetSize(1);
      lb.SetSize(1);
      ub.SetSize(1);
      m_Histogram->SetMeasurementVectorSize(1);
      hsize[0] = size;
      lb[0] = lowerBound;
      ub[0] = upperBound;
      m_Histogram->Initialize(hsize, lb, ub);
    }

    // need copy constructor because of smart pointer to histogram
    LabelStatistics(const LabelStatistics & l)
    {
      m_Count = l.m_Count;
      m_Minimum = l.m_Minimum;
      m_Maximum = l.m_Maximum;
      m_Mean = l.m_Mean;
      m_Sum = l.m_Sum;
      m_SumOfSquares = l.m_SumOfSquares;
      m_Sigma = l.m_Sigma;
      m_Variance = l.m_Variance;
      m_BoundingBox = l.m_BoundingBox;
      m_Histogram = l.m_Histogram;
    }

    LabelStatistics(LabelStatistics &&) = default;

    // added for completeness
    LabelStatistics &
    operator=(const LabelStatistics & l)
    {
      if (this != &l)
      {
        m_Count = l.m_Count;
        m_Minimum = l.m_Minimum;
        m_Maximum = l.m_Maximum;
        m_Mean = l.m_Mean;
        m_Sum = l.m_Sum;
        m_SumOfSquares = l.m_SumOfSquares;
        m_Sigma = l.m_Sigma;
        m_Variance = l.m_Variance;
        m_BoundingBox = l.m_BoundingBox;
        m_Histogram = l.m_Histogram;
      }
      return *this;
    }

    friend std::ostream &
    operator<<(std::ostream & os, const LabelStatistics & labelStatistics)
    {
      using namespace print_helper;

      os << "Count: " << static_cast<typename NumericTraits<IdentifierType>::PrintType>(labelStatistics.m_Count)
         << std::endl;
      os << "Minimum: " << static_cast<typename NumericTraits<RealType>::PrintType>(labelStatistics.m_Minimum)
         << std::endl;
      os << "Maximum: " << static_cast<typename NumericTraits<RealType>::PrintType>(labelStatistics.m_Maximum)
         << std::endl;
      os << "Mean: " << static_cast<typename NumericTraits<RealType>::PrintType>(labelStatistics.m_Mean) << std::endl;
      os << "Sum: " << static_cast<typename NumericTraits<RealType>::PrintType>(labelStatistics.m_Sum) << std::endl;
      os << "SumOfSquares: " << static_cast<typename NumericTraits<RealType>::PrintType>(labelStatistics.m_SumOfSquares)
         << std::endl;
      os << "Sigma: " << static_cast<typename NumericTraits<RealType>::PrintType>(labelStatistics.m_Sigma) << std::endl;
      os << "Variance: " << static_cast<typename NumericTraits<RealType>::PrintType>(labelStatistics.m_Variance)
         << std::endl;
      os << "BoundingBox: " << labelStatistics.m_BoundingBox << std::endl;

      os << "Histogram: ";
      if (labelStatistics.m_Histogram)
      {
        labelStatistics.m_Histogram->Print(os);
      }
      else
      {
        os << "nullptr" << std::endl;
      }

      return os;
    }

    IdentifierType                  m_Count;
    RealType                        m_Minimum;
    RealType                        m_Maximum;
    RealType                        m_Mean;
    RealType                        m_Sum;
    RealType                        m_SumOfSquares;
    RealType                        m_Sigma;
    RealType                        m_Variance;
    BoundingBoxType                 m_BoundingBox;
    typename HistogramType::Pointer m_Histogram;
  };

  /** Type of the map used to store data per label */
  using MapType = std::unordered_map<LabelPixelType, LabelStatistics>;
  using MapIterator = typename MapType::iterator;
  using MapConstIterator = typename MapType::const_iterator;
  using MapSizeType = IdentifierType;

  /** Type of the container used to store valid label values */
  using ValidLabelValuesContainerType = std::vector<LabelPixelType>;

  // macros for Histogram enables
  itkSetMacro(UseHistograms, bool);
  itkGetConstMacro(UseHistograms, bool);
  itkBooleanMacro(UseHistograms);


  virtual const ValidLabelValuesContainerType &
  GetValidLabelValues() const
  {
    return m_ValidLabelValues;
  }

  /** Set the label image */
  itkSetInputMacro(LabelInput, TLabelImage);
  itkGetInputMacro(LabelInput, TLabelImage);

  /** Does the specified label exist? Can only be called after a call
   * a call to Update(). */
  bool
  HasLabel(LabelPixelType label) const
  {
    return m_LabelStatistics.find(label) != m_LabelStatistics.end();
  }

  /** Get the number of labels used */
  MapSizeType
  GetNumberOfObjects() const
  {
    return static_cast<MapSizeType>(m_LabelStatistics.size());
  }

  MapSizeType
  GetNumberOfLabels() const
  {
    return static_cast<MapSizeType>(this->GetNumberOfObjects());
  }

  /** Return the computed Minimum for a label. */
  RealType
  GetMinimum(LabelPixelType label) const;

  /** Return the computed Maximum for a label. */
  RealType
  GetMaximum(LabelPixelType label) const;

  /** Return the computed Mean for a label. */
  RealType
  GetMean(LabelPixelType label) const;

  /** Return the computed Median for a label. Requires histograms to be enabled!
   */
  RealType
  GetMedian(LabelPixelType label) const;

  /** Return the computed Standard Deviation for a label. */
  RealType
  GetSigma(LabelPixelType label) const;

  /** Return the computed Variance for a label. */
  RealType
  GetVariance(LabelPixelType label) const;

  /** Return the computed bounding box for a label. A vector of
   * minIndex, maxIndex pairs for each axis. The intervals include
   * the endpoints.*/
  BoundingBoxType
  GetBoundingBox(LabelPixelType label) const;

  /** Return the computed region. */
  RegionType
  GetRegion(LabelPixelType label) const;

  /** Return the compute Sum for a label. */
  RealType
  GetSum(LabelPixelType label) const;

  /** Return the number of pixels for a label. */
  MapSizeType
  GetCount(LabelPixelType label) const;

  /** Return the histogram for a label */
  HistogramPointer
  GetHistogram(LabelPixelType label) const;

  /** specify Histogram parameters  */
  void
  SetHistogramParameters(const int numBins, RealType lowerBound, RealType upperBound);

  // Change the access from protected to public to expose streaming option, a using statement can not be used due to
  // limitations of wrapping.
  void
  SetNumberOfStreamDivisions(const unsigned int n) override
  {
    Superclass::SetNumberOfStreamDivisions(n);
  }
  unsigned int
  GetNumberOfStreamDivisions() const override
  {
    return Superclass::GetNumberOfStreamDivisions();
  }


#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  itkConceptMacro(InputHasNumericTraitsCheck, (Concept::HasNumericTraits<PixelType>));
  // End concept checking
#endif

protected:
  LabelStatisticsImageFilter();
  ~LabelStatisticsImageFilter() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  void
  BeforeStreamedGenerateData() override
  {
    this->AllocateOutputs();
    m_LabelStatistics.clear();
  }

  /** Do final mean and variance computation from data accumulated in threads.
   */
  void
  AfterStreamedGenerateData() override;

  void
  ThreadedStreamedGenerateData(const RegionType &) override;

private:
  void
  MergeMap(MapType &, MapType &) const;

  MapType                       m_LabelStatistics{};
  ValidLabelValuesContainerType m_ValidLabelValues{};

  bool m_UseHistograms{};

  typename HistogramType::SizeType m_NumBins{};

  RealType m_LowerBound{};
  RealType m_UpperBound{};

  std::mutex m_Mutex{};

}; // end of class
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkLabelStatisticsImageFilter.hxx"
#endif

#endif