File: itkStatisticsImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (155 lines) | stat: -rw-r--r-- 5,032 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkStatisticsImageFilter_hxx
#define itkStatisticsImageFilter_hxx


#include "itkImageScanlineIterator.h"
#include <mutex>

namespace itk
{
template <typename TInputImage>
StatisticsImageFilter<TInputImage>::StatisticsImageFilter()
{
  this->SetNumberOfRequiredInputs(1);

  Self::SetMinimum(NumericTraits<PixelType>::max());
  Self::SetMaximum(NumericTraits<PixelType>::NonpositiveMin());
  Self::SetMean(NumericTraits<RealType>::max());
  Self::SetSigma(NumericTraits<RealType>::max());
  Self::SetVariance(NumericTraits<RealType>::max());
  Self::SetSum(RealType{});
  Self::SetSumOfSquares(RealType{});
}

template <typename TInputImage>
DataObject::Pointer
StatisticsImageFilter<TInputImage>::MakeOutput(const DataObjectIdentifierType & name)
{
  if (name == "Minimum" || name == "Maximum")
  {
    return PixelObjectType::New();
  }
  if (name == "Mean" || name == "Sigma" || name == "Variance" || name == "Sum" || name == "SumOfSquares")
  {
    return RealObjectType::New();
  }
  return Superclass::MakeOutput(name);
}

template <typename TInputImage>
void
StatisticsImageFilter<TInputImage>::BeforeStreamedGenerateData()
{
  Superclass::BeforeStreamedGenerateData();

  // Resize the thread temporaries
  m_Count = SizeValueType{};
  m_SumOfSquares = RealType{};
  m_ThreadSum = RealType{};
  m_ThreadMin = NumericTraits<PixelType>::max();
  m_ThreadMax = NumericTraits<PixelType>::NonpositiveMin();
}

template <typename TInputImage>
void
StatisticsImageFilter<TInputImage>::AfterStreamedGenerateData()
{
  Superclass::AfterStreamedGenerateData();

  const SizeValueType count = m_Count;
  const RealType      sumOfSquares(m_SumOfSquares);
  const PixelType     minimum = m_ThreadMin;
  const PixelType     maximum = m_ThreadMax;
  const RealType      sum(m_ThreadSum);

  const RealType mean = sum / static_cast<RealType>(count);
  const RealType variance =
    (sumOfSquares - (sum * sum / static_cast<RealType>(count))) / (static_cast<RealType>(count) - 1);
  const RealType sigma = std::sqrt(variance);

  // Set the outputs
  this->SetMinimum(minimum);
  this->SetMaximum(maximum);
  this->SetMean(mean);
  this->SetSigma(sigma);
  this->SetVariance(variance);
  this->SetSum(sum);
  this->SetSumOfSquares(sumOfSquares);
}

template <typename TInputImage>
void
StatisticsImageFilter<TInputImage>::ThreadedStreamedGenerateData(const RegionType & regionForThread)
{

  CompensatedSummation<RealType> sum = RealType{};
  CompensatedSummation<RealType> sumOfSquares = RealType{};
  SizeValueType                  count{};
  PixelType                      min = NumericTraits<PixelType>::max();
  PixelType                      max = NumericTraits<PixelType>::NonpositiveMin();

  ImageScanlineConstIterator it(this->GetInput(), regionForThread);

  // do the work
  while (!it.IsAtEnd())
  {
    while (!it.IsAtEndOfLine())
    {
      const PixelType & value = it.Get();
      const auto        realValue = static_cast<RealType>(value);
      min = std::min(min, value);
      max = std::max(max, value);

      sum += realValue;
      sumOfSquares += (realValue * realValue);
      ++count;
      ++it;
    }
    it.NextLine();
  }

  const std::lock_guard<std::mutex> lockGuard(m_Mutex);
  m_ThreadSum += sum;
  m_SumOfSquares += sumOfSquares;
  m_Count += count;
  m_ThreadMin = std::min(min, m_ThreadMin);
  m_ThreadMax = std::max(max, m_ThreadMax);
}

template <typename TImage>
void
StatisticsImageFilter<TImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Count: " << static_cast<typename NumericTraits<SizeValueType>::PrintType>(this->m_Count)
     << std::endl;
  os << indent << "Minimum: " << static_cast<typename NumericTraits<PixelType>::PrintType>(this->GetMinimum())
     << std::endl;
  os << indent << "Maximum: " << static_cast<typename NumericTraits<PixelType>::PrintType>(this->GetMaximum())
     << std::endl;
  os << indent << "Sum: " << this->GetSum() << std::endl;
  os << indent << "Mean: " << this->GetMean() << std::endl;
  os << indent << "Sigma: " << this->GetSigma() << std::endl;
  os << indent << "Variance: " << this->GetVariance() << std::endl;
  os << indent << "SumOfSquares: " << this->GetSumOfSquares() << std::endl;
}
} // end namespace itk
#endif