1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkAdaptiveHistogramEqualizationImageFilter.h"
#include "itkSimpleFilterWatcher.h"
#include "itkTestingMacros.h"
int
itkAdaptiveHistogramEqualizationImageFilterTest(int argc, char * argv[])
{
if (argc < 6)
{
std::cerr << "Usage: " << std::endl;
std::cerr << itkNameOfTestExecutableMacro(argv) << " inputImageFile outputImageFile radius alpha beta"
<< std::endl;
return EXIT_FAILURE;
}
using InputPixelType = float;
static constexpr int ImageDimension = 2;
using InputImageType = itk::Image<InputPixelType, ImageDimension>;
using ReaderType = itk::ImageFileReader<InputImageType>;
using FilterType = itk::AdaptiveHistogramEqualizationImageFilter<InputImageType>;
auto reader = ReaderType::New();
reader->SetFileName(argv[1]);
FilterType::ImageSizeType radius;
radius.Fill(std::stoi(argv[3]));
auto filter = FilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, AdaptiveHistogramEqualizationImageFilter, MovingHistogramImageFilter);
itk::SimpleFilterWatcher watcher(filter);
filter->SetInput(reader->GetOutput());
filter->SetRadius(radius);
float alpha = std::stod(argv[4]);
filter->SetAlpha(alpha);
ITK_TEST_SET_GET_VALUE(alpha, filter->GetAlpha());
float beta = std::stod(argv[5]);
filter->SetBeta(beta);
ITK_TEST_SET_GET_VALUE(beta, filter->GetBeta());
#if !defined(ITK_FUTURE_LEGACY_REMOVE)
bool useLookupTable = true;
ITK_TEST_SET_GET_BOOLEAN(filter, UseLookupTable, useLookupTable);
useLookupTable = false;
ITK_TEST_SET_GET_BOOLEAN(filter, UseLookupTable, useLookupTable);
#endif
//
// The output of the filter is connected here to an intensity rescaler filter
// and then to a writer. Invoking \code{Update()} on the writer triggers the
// execution of both filters.
//
using WritePixelType = unsigned char;
using WriteImageType = itk::Image<WritePixelType, ImageDimension>;
using RescaleFilterType = itk::RescaleIntensityImageFilter<InputImageType, WriteImageType>;
auto rescaler = RescaleFilterType::New();
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
rescaler->SetInput(filter->GetOutput());
using WriterType = itk::ImageFileWriter<WriteImageType>;
auto writer = WriterType::New();
writer->SetFileName(argv[2]);
writer->SetInput(rescaler->GetOutput());
ITK_TRY_EXPECT_NO_EXCEPTION(writer->Update());
return EXIT_SUCCESS;
}
|