1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageMomentsCalculator.h"
#include "itkImageMaskSpatialObject.h"
#include "itkTestingMacros.h"
using PixelType = unsigned short;
using VectorType = itk::Vector<double, 3>;
using MatrixType = itk::Matrix<double, 3>;
using ImageType = itk::Image<PixelType, 3>;
using CalculatorType = itk::ImageMomentsCalculator<ImageType>;
using AffineTransformType = CalculatorType::AffineTransformType;
int
itkImageMomentsTest(int argc, char * argv[])
{
if (argc != 2)
{
std::cerr << "Missing parameters." << std::endl;
std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);
std::cerr << " <mask|nomask>" << std::endl;
return EXIT_FAILURE;
}
const std::string maskCondition{ argv[1] };
/* Define acceptable (absolute) error in computed results.
All the calculations are done in double and are well-conditioned,
so we should be able to get within a few epsilon of the right
values. So choose maxerr to be 10*epsilon for IEEE 754 double.
FIXME: For some reason as yet undetermined, the Intel compiler
produces results that are off by 12*epsilon. This is still
reasonably close but might deserve investigation some day when all
the worse problems have been fixed. */
// double maxerr = 1.9e-15;
constexpr double maxerr = 5.0e-15;
/* Define the image size and physical coordinates */
itk::Size<3> size = { { 20, 40, 80 } };
double origin[3] = { 0.5, 0.5, 0.5 };
double spacing[3] = { 0.1, 0.05, 0.025 };
/* Define positions of the test masses in index coordinates */
unsigned short mass = 1; // Test mass
itk::Index<3>::IndexValueType point[8][3] = {
{ 10 + 8, 20 + 12, 40 + 0 }, { 10 - 8, 20 - 12, 40 - 0 }, { 10 + 3, 20 - 8, 40 + 0 },
{ 10 - 3, 20 + 8, 40 - 0 }, { 10 + 0, 20 + 0, 40 + 10 }, { 10 - 0, 20 - 0, 40 - 10 },
};
/* Define the expected (true) results for comparison */
double ttm = 6.0; // Total mass
double pad[3][3] = {
// Principal axes
{ 0.0, 0.0, 1.0 },
{ 0.6, -0.8, 0.0 },
{ 0.8, 0.6, 0.0 },
};
VectorType tcg;
tcg[0] = 1.5;
tcg[1] = 1.5;
tcg[2] = 1.5;
VectorType tpm;
tpm[0] = 0.125;
tpm[1] = 0.5;
tpm[2] = 2.0; // Principal moments
MatrixType tpa;
tpa.GetVnlMatrix().set((double *)pad);
/* Allocate a simple test image */
auto image = ImageType::New();
ImageType::RegionType region;
region.SetSize(size);
image->SetRegions(region);
/* Set origin and spacing of physical coordinates */
image->SetOrigin(origin);
image->SetSpacing(spacing);
image->Allocate();
image->FillBuffer(PixelType{});
/* Set a few mass points within the image */
/* FIXME: The method used here to set the points is klutzy,
but appears to be the only method currently supported. */
itk::Index<3> index; /* Index over pixels */
for (int i = 0; i < 6; ++i)
{
index.SetIndex(point[i]);
image->SetPixel(index, mass);
}
/* Compute the moments */
auto moments = CalculatorType::New();
moments->SetImage(image);
if (maskCondition == std::string("mask"))
{
// Test the mask spatial object for masked ImageMomentsTest
// Make a mask that covers the entire image space
using MaskImageType = itk::Image<unsigned char, 3>;
auto maskimg = MaskImageType::New();
maskimg->CopyInformation(image);
maskimg->SetRegions(image->GetLargestPossibleRegion());
maskimg->Allocate();
// Masking the entire image should not change the computation results.
maskimg->FillBuffer(itk::NumericTraits<PixelType>::OneValue());
// convert mask image to mask
using LFFImageMaskSpatialObjectType = typename itk::ImageMaskSpatialObject<MaskImageType::ImageDimension>;
auto mask = LFFImageMaskSpatialObjectType::New();
mask->SetImage(maskimg.GetPointer());
mask->Update();
// Purposefully use the base class type
typename itk::SpatialObject<MaskImageType::ImageDimension>::Pointer test =
dynamic_cast<itk::SpatialObject<MaskImageType::ImageDimension> *>(mask.GetPointer());
if (test.IsNull())
{
itkGenericExceptionMacro("Failed conversion to SpatialObject base class.");
}
moments->SetSpatialObjectMask(test.GetPointer());
}
moments->Compute();
/* Printout info */
moments->Print(std::cout);
double ctm = moments->GetTotalMass();
VectorType ccg = moments->GetCenterOfGravity();
VectorType cpm = moments->GetPrincipalMoments();
MatrixType cpa = moments->GetPrincipalAxes();
/* Flip the principal axes if necessary.
The eigenvector solution is still valid if multiplied by a constant.
Since the eigenvectors (principal axes) are normalized, this constant
can be -1. */
if (cpa(1, 0) < 0.0) // Should be 0.6
{
for (unsigned int row = 0; row < 3; ++row)
{
cpa(row, 0) *= -1;
}
}
if (cpa(1, 1) > 0.0) // Should be -0.8
{
for (unsigned int row = 0; row < 3; ++row)
{
cpa(row, 1) *= -1;
}
}
/* Report the various non-central moments */
// FIXME: Indentation is not handled correctly in matrix output
std::cout << "\nTotal mass = " << ctm << std::endl;
std::cout << "True total mass = " << ttm << std::endl;
std::cout << "\nFirst moments about index origin =\n";
std::cout << " " << moments->GetFirstMoments() << std::endl;
std::cout << "\nSecond moments about index origin =\n";
std::cout << " " << moments->GetSecondMoments() << std::endl;
/* Report the center of gravity and central moments */
std::cout << "\nCenter of gravity =\n";
std::cout << " " << ccg << '\n';
std::cout << "True center of gravity =\n";
std::cout << " " << tcg << '\n';
std::cout << "\nSecond central moments =\n";
std::cout << " " << moments->GetCentralMoments() << '\n';
/* Report principal moments and axes */
std::cout << "\nPrincipal moments = \n";
std::cout << " " << cpm << '\n';
std::cout << "True principal moments = \n";
std::cout << " " << tpm << '\n';
std::cout << "\nPrincipal axes = \n";
std::cout << " " << cpa << '\n';
std::cout << "True principal axes = \n";
std::cout << " " << tpa << '\n';
/* Compute transforms between principal and physical axes */
/* FIXME: Automatically check correctness of these results? */
AffineTransformType::Pointer pa2p = moments->GetPrincipalAxesToPhysicalAxesTransform();
std::cout << "\nPrincipal axes to physical axes transform:\n";
std::cout << pa2p->GetMatrix() << std::endl;
AffineTransformType::Pointer p2pa = moments->GetPhysicalAxesToPrincipalAxesTransform();
std::cout << "\nPhysical axes to principal axes transform:\n";
std::cout << p2pa->GetMatrix() << std::endl;
/* Do some error checking on the transforms */
double dist = pa2p->Metric(pa2p);
std::cout << "Distance from self to self = " << dist << std::endl;
auto p2pa2p = AffineTransformType::New();
p2pa2p->Compose(p2pa);
p2pa2p->Compose(pa2p);
double trerr = p2pa2p->Metric();
std::cout << "Distance from composition to identity = ";
std::cout << trerr << std::endl;
/* Compute and report max abs error in computed */
double tmerr = itk::Math::abs(ttm - ctm); // Error in total mass
double cgerr = 0.0; // Error in center of gravity
double pmerr = 0.0; // Error in moments
double paerr = 0.0; // Error in axes
for (int i = 0; i < 3; ++i)
{
if (itk::Math::abs(ccg[i] - tcg[i]) > cgerr)
{
cgerr = itk::Math::abs(ccg[i] - tcg[i]);
}
if (itk::Math::abs(cpm[i] - tpm[i]) > pmerr)
{
pmerr = itk::Math::abs(cpm[i] - tpm[i]);
}
for (int j = 0; j < 3; ++j)
{
if (itk::Math::abs(cpa[i][j] - tpa[i][j]) > paerr)
{
paerr = itk::Math::abs(cpa[i][j] - tpa[i][j]);
}
}
}
std::cout << "\nErrors found in:\n";
std::cout << " Total mass = " << tmerr << std::endl;
std::cout << " Center of gravity = " << cgerr << std::endl;
std::cout << " Principal moments = " << pmerr << std::endl;
std::cout << " Principal axes = " << paerr << std::endl;
std::cout << " Transformations = " << trerr << std::endl;
/* Return error if differences are too large */
int stat = tmerr > maxerr || cgerr > maxerr || pmerr > maxerr || paerr > maxerr || trerr > maxerr;
std::cout << std::endl;
bool pass;
if (stat)
{
std::cout << "Errors are larger than defined maximum value." << std::endl;
std::cout << "Test FAILED !" << std::endl;
pass = false;
}
else
{
std::cout << "Errors are acceptable" << std::endl;
std::cout << "Test PASSED !" << std::endl;
pass = true;
}
if (!pass)
{
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|