1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageFileReader.h"
#include "itkLabelOverlapMeasuresImageFilter.h"
#include "itkTestingMacros.h"
#include <iomanip>
template <unsigned int VImageDimension>
int
LabelOverlapMeasures(int, char * argv[])
{
using PixelType = unsigned int;
using ImageType = itk::Image<PixelType, VImageDimension>;
using ReaderType = itk::ImageFileReader<ImageType>;
auto reader1 = ReaderType::New();
reader1->SetFileName(argv[2]);
auto reader2 = ReaderType::New();
reader2->SetFileName(argv[3]);
using FilterType = itk::LabelOverlapMeasuresImageFilter<ImageType>;
auto filter = FilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, LabelOverlapMeasuresImageFilter, ImageToImageFilter);
filter->SetSourceImage(reader1->GetOutput());
filter->SetTargetImage(reader2->GetOutput());
filter->Update();
std::cout << "All Labels" << std::endl;
std::cout << std::setw(10) << " " << std::setw(17) << "Total" << std::setw(17) << "Union (jaccard)" << std::setw(17)
<< "Mean (dice)" << std::setw(17) << "Volume sim." << std::setw(17) << "False negative" << std::setw(17)
<< "False positive" << std::setw(17) << "False discovery" << std::endl;
std::cout << std::setw(10) << " ";
std::cout << std::setw(17) << filter->GetTotalOverlap();
std::cout << std::setw(17) << filter->GetUnionOverlap();
std::cout << std::setw(17) << filter->GetMeanOverlap();
std::cout << std::setw(17) << filter->GetVolumeSimilarity();
std::cout << std::setw(17) << filter->GetFalseNegativeError();
std::cout << std::setw(17) << filter->GetFalsePositiveError();
std::cout << std::setw(17) << filter->GetFalseDiscoveryRate();
std::cout << std::endl;
std::cout << "Individual Labels" << std::endl;
std::cout << std::setw(10) << "Label" << std::setw(17) << "Target" << std::setw(17) << "Union (jaccard)"
<< std::setw(17) << "Mean (dice)" << std::setw(17) << "Volume sim." << std::setw(17) << "False negative"
<< std::setw(17) << "False positive" << std::setw(17) << "False discovery" << std::endl;
typename FilterType::MapType labelMap = filter->GetLabelSetMeasures();
typename FilterType::MapType::const_iterator it;
int label = 0;
for (it = labelMap.begin(); it != labelMap.end(); ++it)
{
if (it->first == 0)
{
continue;
}
label = it->first;
std::cout << std::setw(10) << label;
std::cout << std::setw(17) << filter->GetTargetOverlap(label);
std::cout << std::setw(17) << filter->GetUnionOverlap(label);
std::cout << std::setw(17) << filter->GetMeanOverlap(label);
std::cout << std::setw(17) << filter->GetVolumeSimilarity(label);
std::cout << std::setw(17) << filter->GetFalseNegativeError(label);
std::cout << std::setw(17) << filter->GetFalsePositiveError(label);
std::cout << std::setw(17) << filter->GetFalseDiscoveryRate(label);
std::cout << std::endl;
}
// Check results when a non-existing label's metrics are queried
//
// Assume that no such label exists
label = itk::NumericTraits<PixelType>::max();
typename FilterType::RealType expectedValue = 0.0;
typename FilterType::RealType result = filter->GetTargetOverlap(label);
if (itk::Math::NotAlmostEquals(expectedValue, result))
{
std::cout << "Error in label " << static_cast<itk::NumericTraits<PixelType>::PrintType>(label) << ": ";
std::cout << "Expected target overlap: " << expectedValue << ", but got " << result << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
result = filter->GetUnionOverlap(label);
if (itk::Math::NotAlmostEquals(expectedValue, result))
{
std::cout << "Error in label " << static_cast<itk::NumericTraits<PixelType>::PrintType>(label) << ": ";
std::cout << "Expected union overlap: " << expectedValue << ", but got " << result << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
result = filter->GetVolumeSimilarity(label);
if (itk::Math::NotAlmostEquals(expectedValue, result))
{
std::cout << "Error in label " << static_cast<itk::NumericTraits<PixelType>::PrintType>(label) << ": ";
std::cout << "Expected volume similarity: " << expectedValue << ", but got " << result << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
result = filter->GetFalseNegativeError(label);
if (itk::Math::NotAlmostEquals(expectedValue, result))
{
std::cout << "Error in label " << static_cast<itk::NumericTraits<PixelType>::PrintType>(label) << ": ";
std::cout << "Expected false negative error: " << expectedValue << ", but got " << result << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
result = filter->GetFalsePositiveError(label);
if (itk::Math::NotAlmostEquals(expectedValue, result))
{
std::cout << "Error in label " << static_cast<itk::NumericTraits<PixelType>::PrintType>(label) << ": ";
std::cout << "Expected false positive error: " << expectedValue << ", but got " << result << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
result = filter->GetFalseDiscoveryRate(label);
if (itk::Math::NotAlmostEquals(expectedValue, result))
{
std::cout << "Error in label " << static_cast<itk::NumericTraits<PixelType>::PrintType>(label) << ": ";
std::cout << "Expected false discovery rate: " << expectedValue << ", but got " << result << std::endl;
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
int
itkLabelOverlapMeasuresImageFilterTest(int argc, char * argv[])
{
if (argc < 4)
{
std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv) << " imageDimension sourceImage "
<< "targetImage" << std::endl;
return EXIT_FAILURE;
}
// Instantiate the filter
constexpr unsigned int ImageDimension = 3;
using PixelType = unsigned int;
using ImageType = itk::Image<PixelType, ImageDimension>;
using LabelOverlapMeasuresImageFilterType = itk::LabelOverlapMeasuresImageFilter<ImageType>;
LabelOverlapMeasuresImageFilterType::Pointer labelOverlapMeasuresImageFilter =
LabelOverlapMeasuresImageFilterType::New();
// Exercise basic object methods
// Done outside the helper function in the test because GCC is limited
// when calling overloaded base class functions.
ITK_EXERCISE_BASIC_OBJECT_METHODS(labelOverlapMeasuresImageFilter, LabelOverlapMeasuresImageFilter, ImageSink);
switch (std::stoi(argv[1]))
{
case 2:
LabelOverlapMeasures<2>(argc, argv);
break;
case 3:
LabelOverlapMeasures<3>(argc, argv);
break;
default:
std::cerr << "Unsupported dimension" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|