1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <iostream>
#include "itkLabelStatisticsImageFilter.h"
#include "itkImageFileReader.h"
#include "itkSimpleFilterWatcher.h"
#include "itkTestingMacros.h"
int
itkLabelStatisticsImageFilterTest(int argc, char * argv[])
{
std::cout << "itkLabelStatisticsImageFilterTest Start" << std::endl;
if (argc < 4)
{
std::cerr << "Missing Arguments" << std::endl;
std::cerr << "Usage: " << std::endl;
std::cerr << itkNameOfTestExecutableMacro(argv) << " inputImage labeledImage useHistograms [numberOfStreamDivision]"
<< std::endl;
return EXIT_FAILURE;
}
using ImageType = itk::Image<unsigned char, 2>;
using ReaderType = itk::ImageFileReader<ImageType>;
auto reader1 = ReaderType::New();
auto reader2 = ReaderType::New();
reader1->SetFileName(argv[1]);
reader2->SetFileName(argv[2]);
unsigned int numberOfStreamDivisions = 1;
if (argc > 4)
{
numberOfStreamDivisions = std::max(std::stoi(argv[4]), 1);
}
using FilterType = itk::LabelStatisticsImageFilter<ImageType, ImageType>;
auto filter = FilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, LabelStatisticsImageFilter, ImageSink);
itk::SimpleFilterWatcher filterWatch(filter);
auto useHistograms = static_cast<bool>(std::stoi(argv[3]));
ITK_TEST_SET_GET_BOOLEAN(filter, UseHistograms, useHistograms);
filter->SetNumberOfStreamDivisions(numberOfStreamDivisions);
ITK_TEST_SET_GET_VALUE(numberOfStreamDivisions, filter->GetNumberOfStreamDivisions());
filter->SetInput(reader1->GetOutput());
filter->SetLabelInput(reader2->GetOutput());
try
{
filter->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception caught ! " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
const unsigned int numberOfObjects = filter->GetNumberOfObjects();
const unsigned int numberOfLabels = filter->GetNumberOfLabels();
using RealType = FilterType::RealType;
using BoundingBoxType = FilterType::BoundingBoxType;
using RegionType = FilterType::RegionType;
using LabelPixelType = FilterType::LabelPixelType;
LabelPixelType labelValue;
std::cout << "There are " << numberOfLabels << " labels" << std::endl;
std::cout << "There are " << numberOfObjects << " objects" << std::endl;
unsigned int labelCount = 0;
// Try to validate that the numberOfLabels in the ValidLabelList is
// equal to the number of labels reported
for (auto vIt = filter->GetValidLabelValues().begin(); vIt != filter->GetValidLabelValues().end(); ++vIt)
{
if (filter->HasLabel(*vIt))
{
++labelCount;
}
}
if (labelCount != numberOfLabels)
{
std::cerr << "Valid Labels Mismatch found!" << std::endl;
std::cerr << labelCount << " != " << numberOfLabels << std::endl;
return EXIT_FAILURE;
}
// Try two labels: one that exists and one that does not
for (int i = 0; i < 2; ++i)
{
// Find an existing label
if (i == 0)
{
labelValue = 0;
while (!filter->HasLabel(labelValue))
{
labelValue++;
}
std::cout << "Label Statistics for label "
<< static_cast<itk::NumericTraits<LabelPixelType>::PrintType>(labelValue) << " which exists"
<< std::endl;
}
// Find a non existent label
if (i != 0)
{
labelValue = 0;
while (filter->HasLabel(labelValue))
{
labelValue++;
}
std::cout << "Label Statistics for label "
<< static_cast<itk::NumericTraits<LabelPixelType>::PrintType>(labelValue) << " which does not exist"
<< std::endl;
}
const RealType min = filter->GetMinimum(labelValue);
const RealType max = filter->GetMaximum(labelValue);
const RealType median = filter->GetMedian(labelValue);
const RealType mean = filter->GetMean(labelValue);
const RealType sigma = filter->GetSigma(labelValue);
const RealType variance = filter->GetVariance(labelValue);
const RealType sum = filter->GetSum(labelValue);
const BoundingBoxType box = filter->GetBoundingBox(labelValue);
const RegionType region = filter->GetRegion(labelValue);
std::cout << "Minimum = " << min << std::endl;
std::cout << "Maximum = " << max << std::endl;
std::cout << "Median = " << median << std::endl;
std::cout << "Mean = " << mean << std::endl;
std::cout << "Sigma = " << sigma << std::endl;
std::cout << "Variance = " << variance << std::endl;
std::cout << "Sum = " << sum << std::endl;
std::cout << "Region = " << region << std::endl;
auto itr = box.begin();
while (itr != box.end())
{
std::cout << "Index = " << *itr << std::endl;
++itr;
}
}
return EXIT_SUCCESS;
}
|