File: itkStatisticsImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (188 lines) | stat: -rw-r--r-- 6,519 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include <iostream>

#include "itkMersenneTwisterRandomVariateGenerator.h"

#include "itkStatisticsImageFilter.h"
#include "itkRandomImageSource.h"
#include "itkSimpleFilterWatcher.h"
#include "itkMath.h"
#include "itkTestingMacros.h"


int
itkStatisticsImageFilterTest(int argc, char * argv[])
{
  std::cout << "itkStatisticsImageFilterTest  [numberOfStreamDivisions]" << std::endl;

  int status = 0;


  unsigned int numberOfStreamDivisions = 1;

  if (argc > 1)
  {
    numberOfStreamDivisions = std::max(std::stoi(argv[1]), 1);
  }

  using FloatImage = itk::Image<int, 3>;

  itk::Statistics::MersenneTwisterRandomVariateGenerator::GetInstance()->SetSeed(987);

  auto                   image = FloatImage::New();
  FloatImage::RegionType region;
  FloatImage::SizeType   size;
  size.Fill(64);
  FloatImage::IndexType index;
  index.Fill(0);

  region.SetIndex(index);
  region.SetSize(size);

  // first try a constant image
  float fillValue = -100.0;
  image->SetRegions(region);
  image->Allocate();
  image->FillBuffer(static_cast<FloatImage::PixelType>(fillValue));

  float sum = fillValue * static_cast<float>(region.GetNumberOfPixels());
  float sumOfSquares = std::pow(fillValue, 2.0) * static_cast<float>(region.GetNumberOfPixels());

  using FilterType = itk::StatisticsImageFilter<FloatImage>;
  auto filter = FilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, StatisticsImageFilter, ImageSink);


  itk::SimpleFilterWatcher filterWatch(filter);

  filter->SetNumberOfStreamDivisions(numberOfStreamDivisions);
  ITK_TEST_SET_GET_VALUE(numberOfStreamDivisions, filter->GetNumberOfStreamDivisions());

  filter->SetInput(image);

  ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());

  if (itk::Math::NotAlmostEquals(filter->GetMinimum(), fillValue))
  {
    std::cerr << "GetMinimum failed! Got " << filter->GetMinimum() << " but expected " << fillValue << std::endl;
    status++;
  }
  if (itk::Math::NotAlmostEquals(filter->GetMaximum(), fillValue))
  {
    std::cerr << "GetMaximum failed! Got " << filter->GetMaximum() << " but expected " << fillValue << std::endl;
    status++;
  }
  if (itk::Math::NotAlmostEquals(filter->GetSum(), sum))
  {
    std::cerr << "GetSum failed! Got " << filter->GetSum() << " but expected " << sum << std::endl;
    status++;
  }
  if (itk::Math::NotAlmostEquals(filter->GetSumOfSquares(), sumOfSquares))
  {
    std::cerr << "GetSumOfSquares failed! Got " << filter->GetSumOfSquares() << " but expected " << sumOfSquares
              << std::endl;
    status++;
  }

  if (itk::Math::NotAlmostEquals(filter->GetMean(), fillValue))
  {
    std::cerr << "GetMean failed! Got " << filter->GetMean() << " but expected " << fillValue << std::endl;
    status++;
  }
  if (itk::Math::NotAlmostEquals(filter->GetVariance(), 0.0))
  {
    std::cerr << "GetVariance failed! Got " << filter->GetVariance() << " but expected " << 0.0 << std::endl;
    status++;
  }


  // Now generate a real image

  using SourceType = itk::RandomImageSource<FloatImage>;
  auto source = SourceType::New();

  FloatImage::SizeValueType randomSize[3] = { 17, 8, 241 };

  source->SetSize(randomSize);
  float minValue = -100.0;
  float maxValue = 1000.0;

  source->SetMin(static_cast<FloatImage::PixelType>(minValue));
  source->SetMax(static_cast<FloatImage::PixelType>(maxValue));

  filter->SetInput(source->GetOutput());
  filter->SetNumberOfStreamDivisions(numberOfStreamDivisions);
  ITK_TRY_EXPECT_NO_EXCEPTION(filter->UpdateLargestPossibleRegion());

  double expectedSigma = std::sqrt((maxValue - minValue) * (maxValue - minValue) / 12.0);
  double epsilon = (maxValue - minValue) * .001;

  if (itk::Math::abs(filter->GetSigma() - expectedSigma) > epsilon)
  {
    std::cerr << "GetSigma failed! Got " << filter->GetSigma() << " but expected " << expectedSigma << std::endl;
  }

  // Now generate an image with a known mean and variance
  itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer rvgen =
    itk::Statistics::MersenneTwisterRandomVariateGenerator::GetInstance();
  double knownMean = 12.0;
  double knownVariance = 10.0;

  using DoubleImage = itk::Image<double, 3>;
  auto                    dImage = DoubleImage::New();
  DoubleImage::SizeType   dsize;
  DoubleImage::IndexType  dindex;
  DoubleImage::RegionType dregion;
  dsize.Fill(50);
  dindex.Fill(0);
  dregion.SetSize(dsize);
  dregion.SetIndex(dindex);
  dImage->SetRegions(dregion);
  dImage->Allocate();
  itk::ImageRegionIterator<DoubleImage> it(dImage, dregion);
  while (!it.IsAtEnd())
  {
    it.Set(rvgen->GetNormalVariate(knownMean, knownVariance));
    ++it;
  }
  using DFilterType = itk::StatisticsImageFilter<DoubleImage>;
  auto dfilter = DFilterType::New();
  dfilter->SetInput(dImage);
  dfilter->SetNumberOfStreamDivisions(numberOfStreamDivisions);
  ITK_TRY_EXPECT_NO_EXCEPTION(dfilter->UpdateLargestPossibleRegion());
  double testMean = dfilter->GetMean();
  double testVariance = dfilter->GetVariance();
  double diff = itk::Math::abs(testMean - knownMean);
  if ((diff != 0.0 && knownMean != 0.0) && diff / itk::Math::abs(knownMean) > .01)
  {
    std::cout << "Expected mean is " << knownMean << ", computed mean is " << testMean << std::endl;
    return EXIT_FAILURE;
  }
  std::cout << "Expected mean is " << knownMean << ", computed mean is " << testMean << std::endl;
  diff = itk::Math::abs(testVariance - knownVariance);
  if ((diff != 0.0 && knownVariance != 0.0) && diff / itk::Math::abs(knownVariance) > .1)
  {
    std::cout << "Expected variance is " << knownVariance << ", computed variance is " << testVariance << std::endl;
    return EXIT_FAILURE;
  }
  std::cout << "Expected variance is " << knownVariance << ", computed variance is " << testVariance << std::endl;
  return status;
}