1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <iostream>
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include "itkStatisticsImageFilter.h"
#include "itkRandomImageSource.h"
#include "itkSimpleFilterWatcher.h"
#include "itkMath.h"
#include "itkTestingMacros.h"
int
itkStatisticsImageFilterTest(int argc, char * argv[])
{
std::cout << "itkStatisticsImageFilterTest [numberOfStreamDivisions]" << std::endl;
int status = 0;
unsigned int numberOfStreamDivisions = 1;
if (argc > 1)
{
numberOfStreamDivisions = std::max(std::stoi(argv[1]), 1);
}
using FloatImage = itk::Image<int, 3>;
itk::Statistics::MersenneTwisterRandomVariateGenerator::GetInstance()->SetSeed(987);
auto image = FloatImage::New();
FloatImage::RegionType region;
FloatImage::SizeType size;
size.Fill(64);
FloatImage::IndexType index;
index.Fill(0);
region.SetIndex(index);
region.SetSize(size);
// first try a constant image
float fillValue = -100.0;
image->SetRegions(region);
image->Allocate();
image->FillBuffer(static_cast<FloatImage::PixelType>(fillValue));
float sum = fillValue * static_cast<float>(region.GetNumberOfPixels());
float sumOfSquares = std::pow(fillValue, 2.0) * static_cast<float>(region.GetNumberOfPixels());
using FilterType = itk::StatisticsImageFilter<FloatImage>;
auto filter = FilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, StatisticsImageFilter, ImageSink);
itk::SimpleFilterWatcher filterWatch(filter);
filter->SetNumberOfStreamDivisions(numberOfStreamDivisions);
ITK_TEST_SET_GET_VALUE(numberOfStreamDivisions, filter->GetNumberOfStreamDivisions());
filter->SetInput(image);
ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());
if (itk::Math::NotAlmostEquals(filter->GetMinimum(), fillValue))
{
std::cerr << "GetMinimum failed! Got " << filter->GetMinimum() << " but expected " << fillValue << std::endl;
status++;
}
if (itk::Math::NotAlmostEquals(filter->GetMaximum(), fillValue))
{
std::cerr << "GetMaximum failed! Got " << filter->GetMaximum() << " but expected " << fillValue << std::endl;
status++;
}
if (itk::Math::NotAlmostEquals(filter->GetSum(), sum))
{
std::cerr << "GetSum failed! Got " << filter->GetSum() << " but expected " << sum << std::endl;
status++;
}
if (itk::Math::NotAlmostEquals(filter->GetSumOfSquares(), sumOfSquares))
{
std::cerr << "GetSumOfSquares failed! Got " << filter->GetSumOfSquares() << " but expected " << sumOfSquares
<< std::endl;
status++;
}
if (itk::Math::NotAlmostEquals(filter->GetMean(), fillValue))
{
std::cerr << "GetMean failed! Got " << filter->GetMean() << " but expected " << fillValue << std::endl;
status++;
}
if (itk::Math::NotAlmostEquals(filter->GetVariance(), 0.0))
{
std::cerr << "GetVariance failed! Got " << filter->GetVariance() << " but expected " << 0.0 << std::endl;
status++;
}
// Now generate a real image
using SourceType = itk::RandomImageSource<FloatImage>;
auto source = SourceType::New();
FloatImage::SizeValueType randomSize[3] = { 17, 8, 241 };
source->SetSize(randomSize);
float minValue = -100.0;
float maxValue = 1000.0;
source->SetMin(static_cast<FloatImage::PixelType>(minValue));
source->SetMax(static_cast<FloatImage::PixelType>(maxValue));
filter->SetInput(source->GetOutput());
filter->SetNumberOfStreamDivisions(numberOfStreamDivisions);
ITK_TRY_EXPECT_NO_EXCEPTION(filter->UpdateLargestPossibleRegion());
double expectedSigma = std::sqrt((maxValue - minValue) * (maxValue - minValue) / 12.0);
double epsilon = (maxValue - minValue) * .001;
if (itk::Math::abs(filter->GetSigma() - expectedSigma) > epsilon)
{
std::cerr << "GetSigma failed! Got " << filter->GetSigma() << " but expected " << expectedSigma << std::endl;
}
// Now generate an image with a known mean and variance
itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer rvgen =
itk::Statistics::MersenneTwisterRandomVariateGenerator::GetInstance();
double knownMean = 12.0;
double knownVariance = 10.0;
using DoubleImage = itk::Image<double, 3>;
auto dImage = DoubleImage::New();
DoubleImage::SizeType dsize;
DoubleImage::IndexType dindex;
DoubleImage::RegionType dregion;
dsize.Fill(50);
dindex.Fill(0);
dregion.SetSize(dsize);
dregion.SetIndex(dindex);
dImage->SetRegions(dregion);
dImage->Allocate();
itk::ImageRegionIterator<DoubleImage> it(dImage, dregion);
while (!it.IsAtEnd())
{
it.Set(rvgen->GetNormalVariate(knownMean, knownVariance));
++it;
}
using DFilterType = itk::StatisticsImageFilter<DoubleImage>;
auto dfilter = DFilterType::New();
dfilter->SetInput(dImage);
dfilter->SetNumberOfStreamDivisions(numberOfStreamDivisions);
ITK_TRY_EXPECT_NO_EXCEPTION(dfilter->UpdateLargestPossibleRegion());
double testMean = dfilter->GetMean();
double testVariance = dfilter->GetVariance();
double diff = itk::Math::abs(testMean - knownMean);
if ((diff != 0.0 && knownMean != 0.0) && diff / itk::Math::abs(knownMean) > .01)
{
std::cout << "Expected mean is " << knownMean << ", computed mean is " << testMean << std::endl;
return EXIT_FAILURE;
}
std::cout << "Expected mean is " << knownMean << ", computed mean is " << testMean << std::endl;
diff = itk::Math::abs(testVariance - knownVariance);
if ((diff != 0.0 && knownVariance != 0.0) && diff / itk::Math::abs(knownVariance) > .1)
{
std::cout << "Expected variance is " << knownVariance << ", computed variance is " << testVariance << std::endl;
return EXIT_FAILURE;
}
std::cout << "Expected variance is " << knownVariance << ", computed variance is " << testVariance << std::endl;
return status;
}
|