File: itkBinaryImageToStatisticsLabelMapFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (218 lines) | stat: -rw-r--r-- 8,289 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkBinaryImageToStatisticsLabelMapFilter_h
#define itkBinaryImageToStatisticsLabelMapFilter_h

#include "itkStatisticsLabelObject.h"
#include "itkBinaryImageToLabelMapFilter.h"
#include "itkStatisticsLabelMapFilter.h"

namespace itk
{
/**
 * \class BinaryImageToStatisticsLabelMapFilter
 * \brief a convenient class to convert a binary image to a label map and valuate the statistics attributes at once
 *
 * \author Gaetan Lehmann. Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France.
 *
 * This implementation was taken from the Insight Journal paper:
 * https://www.insight-journal.org/browse/publication/176
 *
 * \sa StatisticsLabelObject, LabelStatisticsOpeningImageFilter, BinaryStatisticsOpeningImageFilter
 * \ingroup ImageEnhancement  MathematicalMorphologyImageFilters
 * \ingroup ITKLabelMap
 */
template <typename TInputImage,
          typename TFeatureImage,
          typename TOutputImage = LabelMap<StatisticsLabelObject<SizeValueType, TInputImage::ImageDimension>>>
class ITK_TEMPLATE_EXPORT BinaryImageToStatisticsLabelMapFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(BinaryImageToStatisticsLabelMapFilter);

  /** Standard class type aliases. */
  using Self = BinaryImageToStatisticsLabelMapFilter;
  using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Some convenient type alias. */
  using InputImageType = TInputImage;
  using InputImagePointer = typename InputImageType::Pointer;
  using InputImageConstPointer = typename InputImageType::ConstPointer;
  using InputImageRegionType = typename InputImageType::RegionType;
  using InputImagePixelType = typename InputImageType::PixelType;

  using OutputImageType = TOutputImage;
  using OutputImagePointer = typename OutputImageType::Pointer;
  using OutputImageConstPointer = typename OutputImageType::ConstPointer;
  using OutputImageRegionType = typename OutputImageType::RegionType;
  using OutputImagePixelType = typename OutputImageType::PixelType;
  using LabelObjectType = typename OutputImageType::LabelObjectType;

  using FeatureImageType = TFeatureImage;
  using FeatureImagePointer = typename FeatureImageType::Pointer;
  using FeatureImageConstPointer = typename FeatureImageType::ConstPointer;
  using FeatureImagePixelType = typename FeatureImageType::PixelType;

  /** ImageDimension constants */
  static constexpr unsigned int InputImageDimension = TInputImage::ImageDimension;
  static constexpr unsigned int OutputImageDimension = TInputImage::ImageDimension;
  static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;

  using LabelizerType = BinaryImageToLabelMapFilter<InputImageType, OutputImageType>;
  using LabelObjectValuatorType = StatisticsLabelMapFilter<OutputImageType, FeatureImageType>;

  /** Standard New method. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(BinaryImageToStatisticsLabelMapFilter);

  /**
   * Set/Get whether the connected components are defined strictly by
   * face connectivity or by face+edge+vertex connectivity.  Default is
   * FullyConnectedOff.  For objects that are 1 pixel wide, use
   * FullyConnectedOn.
   */
  itkSetMacro(FullyConnected, bool);
  itkGetConstReferenceMacro(FullyConnected, bool);
  itkBooleanMacro(FullyConnected);

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  itkConceptMacro(InputEqualityComparableCheck, (Concept::EqualityComparable<InputImagePixelType>));
  itkConceptMacro(IntConvertibleToInputCheck, (Concept::Convertible<int, InputImagePixelType>));
  itkConceptMacro(InputOStreamWritableCheck, (Concept::OStreamWritable<InputImagePixelType>));
  // End concept checking
#endif

  /**
   * Set/Get the value used as "background" in the output image.
   * Defaults to NumericTraits<PixelType>::NonpositiveMin().
   */
  itkSetMacro(OutputBackgroundValue, OutputImagePixelType);
  itkGetConstMacro(OutputBackgroundValue, OutputImagePixelType);

  /**
   * Set/Get the value used as "foreground" in the output image.
   * Defaults to NumericTraits<PixelType>::max().
   */
  itkSetMacro(InputForegroundValue, InputImagePixelType);
  itkGetConstMacro(InputForegroundValue, InputImagePixelType);

  /**
   * Set/Get whether the maximum Feret diameter should be computed or not. The
   * default value is false, because of the high computation time required.
   */
  itkSetMacro(ComputeFeretDiameter, bool);
  itkGetConstReferenceMacro(ComputeFeretDiameter, bool);
  itkBooleanMacro(ComputeFeretDiameter);

  /**
   * Set/Get whether the perimeter should be computed or not. The default value
   * is false, because of the high computation time required.
   */
  itkSetMacro(ComputePerimeter, bool);
  itkGetConstReferenceMacro(ComputePerimeter, bool);
  itkBooleanMacro(ComputePerimeter);

  /** Set the feature image */
  void
  SetFeatureImage(const TFeatureImage * input)
  {
    // Process object is not const-correct so the const casting is required.
    this->SetNthInput(1, const_cast<TFeatureImage *>(input));
  }

  /** Get the feature image */
  const FeatureImageType *
  GetFeatureImage()
  {
    return static_cast<const FeatureImageType *>(this->ProcessObject::GetInput(1));
  }

  /** Set the input image */
  void
  SetInput1(const InputImageType * input)
  {
    this->SetInput(input);
  }

  /** Set the feature image */
  void
  SetInput2(const FeatureImageType * input)
  {
    this->SetFeatureImage(input);
  }

  /**
   * Set/Get whether the histogram should be attached to the label object or not.
   * This option defaults to `true`, but because the histogram may take a lot of memory
   * compared to the other attributes, this option is useful to reduce the memory usage
   * when the histogram is not required.
   */
  itkSetMacro(ComputeHistogram, bool);
  itkGetConstReferenceMacro(ComputeHistogram, bool);
  itkBooleanMacro(ComputeHistogram);

  /**
   * Set/Get the number of bins in the histogram. Note that the histogram is used
   * to compute the median value, and that this option may have an effect on the
   * value of the median.
   */
  itkSetMacro(NumberOfBins, unsigned int);
  itkGetConstReferenceMacro(NumberOfBins, unsigned int);

protected:
  BinaryImageToStatisticsLabelMapFilter();
  ~BinaryImageToStatisticsLabelMapFilter() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** BinaryImageToStatisticsLabelMapFilter needs the entire input be
   * available. Thus, it needs to provide an implementation of
   * GenerateInputRequestedRegion(). */
  void
  GenerateInputRequestedRegion() override;

  /** BinaryImageToStatisticsLabelMapFilter will produce the entire output. */
  void
  EnlargeOutputRequestedRegion(DataObject * itkNotUsed(output)) override;

  /** Single-threaded version of GenerateData.  This filter delegates
   * to GrayscaleGeodesicErodeImageFilter. */
  void
  GenerateData() override;

private:
  bool                 m_FullyConnected{};
  OutputImagePixelType m_OutputBackgroundValue{};
  InputImagePixelType  m_InputForegroundValue{};
  bool                 m_ComputeFeretDiameter{};
  bool                 m_ComputePerimeter{};
  unsigned int         m_NumberOfBins{};
  bool                 m_ComputeHistogram{};
}; // end of class
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkBinaryImageToStatisticsLabelMapFilter.hxx"
#endif

#endif