1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkBinaryImageToStatisticsLabelMapFilter_h
#define itkBinaryImageToStatisticsLabelMapFilter_h
#include "itkStatisticsLabelObject.h"
#include "itkBinaryImageToLabelMapFilter.h"
#include "itkStatisticsLabelMapFilter.h"
namespace itk
{
/**
* \class BinaryImageToStatisticsLabelMapFilter
* \brief a convenient class to convert a binary image to a label map and valuate the statistics attributes at once
*
* \author Gaetan Lehmann. Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France.
*
* This implementation was taken from the Insight Journal paper:
* https://www.insight-journal.org/browse/publication/176
*
* \sa StatisticsLabelObject, LabelStatisticsOpeningImageFilter, BinaryStatisticsOpeningImageFilter
* \ingroup ImageEnhancement MathematicalMorphologyImageFilters
* \ingroup ITKLabelMap
*/
template <typename TInputImage,
typename TFeatureImage,
typename TOutputImage = LabelMap<StatisticsLabelObject<SizeValueType, TInputImage::ImageDimension>>>
class ITK_TEMPLATE_EXPORT BinaryImageToStatisticsLabelMapFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(BinaryImageToStatisticsLabelMapFilter);
/** Standard class type aliases. */
using Self = BinaryImageToStatisticsLabelMapFilter;
using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Some convenient type alias. */
using InputImageType = TInputImage;
using InputImagePointer = typename InputImageType::Pointer;
using InputImageConstPointer = typename InputImageType::ConstPointer;
using InputImageRegionType = typename InputImageType::RegionType;
using InputImagePixelType = typename InputImageType::PixelType;
using OutputImageType = TOutputImage;
using OutputImagePointer = typename OutputImageType::Pointer;
using OutputImageConstPointer = typename OutputImageType::ConstPointer;
using OutputImageRegionType = typename OutputImageType::RegionType;
using OutputImagePixelType = typename OutputImageType::PixelType;
using LabelObjectType = typename OutputImageType::LabelObjectType;
using FeatureImageType = TFeatureImage;
using FeatureImagePointer = typename FeatureImageType::Pointer;
using FeatureImageConstPointer = typename FeatureImageType::ConstPointer;
using FeatureImagePixelType = typename FeatureImageType::PixelType;
/** ImageDimension constants */
static constexpr unsigned int InputImageDimension = TInputImage::ImageDimension;
static constexpr unsigned int OutputImageDimension = TInputImage::ImageDimension;
static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;
using LabelizerType = BinaryImageToLabelMapFilter<InputImageType, OutputImageType>;
using LabelObjectValuatorType = StatisticsLabelMapFilter<OutputImageType, FeatureImageType>;
/** Standard New method. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(BinaryImageToStatisticsLabelMapFilter);
/**
* Set/Get whether the connected components are defined strictly by
* face connectivity or by face+edge+vertex connectivity. Default is
* FullyConnectedOff. For objects that are 1 pixel wide, use
* FullyConnectedOn.
*/
itkSetMacro(FullyConnected, bool);
itkGetConstReferenceMacro(FullyConnected, bool);
itkBooleanMacro(FullyConnected);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(InputEqualityComparableCheck, (Concept::EqualityComparable<InputImagePixelType>));
itkConceptMacro(IntConvertibleToInputCheck, (Concept::Convertible<int, InputImagePixelType>));
itkConceptMacro(InputOStreamWritableCheck, (Concept::OStreamWritable<InputImagePixelType>));
// End concept checking
#endif
/**
* Set/Get the value used as "background" in the output image.
* Defaults to NumericTraits<PixelType>::NonpositiveMin().
*/
itkSetMacro(OutputBackgroundValue, OutputImagePixelType);
itkGetConstMacro(OutputBackgroundValue, OutputImagePixelType);
/**
* Set/Get the value used as "foreground" in the output image.
* Defaults to NumericTraits<PixelType>::max().
*/
itkSetMacro(InputForegroundValue, InputImagePixelType);
itkGetConstMacro(InputForegroundValue, InputImagePixelType);
/**
* Set/Get whether the maximum Feret diameter should be computed or not. The
* default value is false, because of the high computation time required.
*/
itkSetMacro(ComputeFeretDiameter, bool);
itkGetConstReferenceMacro(ComputeFeretDiameter, bool);
itkBooleanMacro(ComputeFeretDiameter);
/**
* Set/Get whether the perimeter should be computed or not. The default value
* is false, because of the high computation time required.
*/
itkSetMacro(ComputePerimeter, bool);
itkGetConstReferenceMacro(ComputePerimeter, bool);
itkBooleanMacro(ComputePerimeter);
/** Set the feature image */
void
SetFeatureImage(const TFeatureImage * input)
{
// Process object is not const-correct so the const casting is required.
this->SetNthInput(1, const_cast<TFeatureImage *>(input));
}
/** Get the feature image */
const FeatureImageType *
GetFeatureImage()
{
return static_cast<const FeatureImageType *>(this->ProcessObject::GetInput(1));
}
/** Set the input image */
void
SetInput1(const InputImageType * input)
{
this->SetInput(input);
}
/** Set the feature image */
void
SetInput2(const FeatureImageType * input)
{
this->SetFeatureImage(input);
}
/**
* Set/Get whether the histogram should be attached to the label object or not.
* This option defaults to `true`, but because the histogram may take a lot of memory
* compared to the other attributes, this option is useful to reduce the memory usage
* when the histogram is not required.
*/
itkSetMacro(ComputeHistogram, bool);
itkGetConstReferenceMacro(ComputeHistogram, bool);
itkBooleanMacro(ComputeHistogram);
/**
* Set/Get the number of bins in the histogram. Note that the histogram is used
* to compute the median value, and that this option may have an effect on the
* value of the median.
*/
itkSetMacro(NumberOfBins, unsigned int);
itkGetConstReferenceMacro(NumberOfBins, unsigned int);
protected:
BinaryImageToStatisticsLabelMapFilter();
~BinaryImageToStatisticsLabelMapFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** BinaryImageToStatisticsLabelMapFilter needs the entire input be
* available. Thus, it needs to provide an implementation of
* GenerateInputRequestedRegion(). */
void
GenerateInputRequestedRegion() override;
/** BinaryImageToStatisticsLabelMapFilter will produce the entire output. */
void
EnlargeOutputRequestedRegion(DataObject * itkNotUsed(output)) override;
/** Single-threaded version of GenerateData. This filter delegates
* to GrayscaleGeodesicErodeImageFilter. */
void
GenerateData() override;
private:
bool m_FullyConnected{};
OutputImagePixelType m_OutputBackgroundValue{};
InputImagePixelType m_InputForegroundValue{};
bool m_ComputeFeretDiameter{};
bool m_ComputePerimeter{};
unsigned int m_NumberOfBins{};
bool m_ComputeHistogram{};
}; // end of class
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkBinaryImageToStatisticsLabelMapFilter.hxx"
#endif
#endif
|