File: itkBinaryReconstructionByErosionImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (145 lines) | stat: -rw-r--r-- 5,152 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkBinaryReconstructionByErosionImageFilter_hxx
#define itkBinaryReconstructionByErosionImageFilter_hxx

#include "itkProgressAccumulator.h"


namespace itk
{

template <typename TInputImage>
BinaryReconstructionByErosionImageFilter<TInputImage>::BinaryReconstructionByErosionImageFilter()
{
  m_BackgroundValue = NumericTraits<OutputImagePixelType>::NonpositiveMin();
  m_ForegroundValue = NumericTraits<OutputImagePixelType>::max();
  m_FullyConnected = false;
  this->SetPrimaryInputName("MarkerImage");
  this->AddRequiredInputName("MaskImage", 1);
}

template <typename TInputImage>
void
BinaryReconstructionByErosionImageFilter<TInputImage>::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // We need all the input.
  InputImagePointer input = const_cast<InputImageType *>(this->GetMarkerImage());
  if (input)
  {
    input->SetRequestedRegion(input->GetLargestPossibleRegion());
  }

  input = const_cast<InputImageType *>(this->GetMaskImage());
  if (input)
  {
    input->SetRequestedRegion(input->GetLargestPossibleRegion());
  }
}


template <typename TInputImage>
void
BinaryReconstructionByErosionImageFilter<TInputImage>::EnlargeOutputRequestedRegion(DataObject *)
{
  this->GetOutput()->SetRequestedRegion(this->GetOutput()->GetLargestPossibleRegion());
}


template <typename TInputImage>
void
BinaryReconstructionByErosionImageFilter<TInputImage>::GenerateData()
{
  // Create a process accumulator for tracking the progress of this minipipeline
  auto progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter(this);

  // Allocate the output
  this->AllocateOutputs();

  auto notMask = NotType::New();
  notMask->SetInput(this->GetMaskImage());
  notMask->SetForegroundValue(m_ForegroundValue);
  notMask->SetBackgroundValue(m_BackgroundValue);
  notMask->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
  progress->RegisterInternalFilter(notMask, .1f);

  auto notMarker = NotType::New();
  notMarker->SetInput(this->GetMarkerImage());
  notMarker->SetForegroundValue(m_ForegroundValue);
  notMarker->SetBackgroundValue(m_BackgroundValue);
  notMarker->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
  progress->RegisterInternalFilter(notMarker, .1f);

  auto labelizer = LabelizerType::New();
  labelizer->SetInput(notMask->GetOutput());
  labelizer->SetInputForegroundValue(m_ForegroundValue);
  labelizer->SetOutputBackgroundValue(m_BackgroundValue);
  labelizer->SetFullyConnected(m_FullyConnected);
  labelizer->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
  progress->RegisterInternalFilter(labelizer, .2f);

  auto reconstruction = ReconstructionType::New();
  reconstruction->SetInput(labelizer->GetOutput());
  reconstruction->SetMarkerImage(notMarker->GetOutput());
  reconstruction->SetForegroundValue(m_ForegroundValue);
  reconstruction->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
  progress->RegisterInternalFilter(reconstruction, .2f);

  auto opening = OpeningType::New();
  opening->SetInput(reconstruction->GetOutput());
  opening->SetLambda(true);
  opening->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
  progress->RegisterInternalFilter(opening, .2f);

  // invert the image during the binarization
  auto binarizer = BinarizerType::New();
  binarizer->SetInput(opening->GetOutput());
  binarizer->SetLabel(m_BackgroundValue);
  binarizer->SetNegated(true);
  binarizer->SetBackgroundValue(m_ForegroundValue);
  binarizer->SetFeatureImage(this->GetMaskImage());
  binarizer->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
  progress->RegisterInternalFilter(binarizer, .2f);

  binarizer->GraftOutput(this->GetOutput());
  binarizer->Update();
  this->GraftOutput(binarizer->GetOutput());
}


template <typename TInputImage>
void
BinaryReconstructionByErosionImageFilter<TInputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "FullyConnected: " << (m_FullyConnected ? "On" : "Off") << std::endl;
  os << indent
     << "BackgroundValue: " << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_BackgroundValue)
     << std::endl;
  os << indent
     << "ForegroundValue: " << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_ForegroundValue)
     << std::endl;
}

} // end namespace itk
#endif