1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkBinaryStatisticsKeepNObjectsImageFilter_hxx
#define itkBinaryStatisticsKeepNObjectsImageFilter_hxx
#include "itkProgressAccumulator.h"
namespace itk
{
template <typename TInputImage, typename TFeatureImage>
BinaryStatisticsKeepNObjectsImageFilter<TInputImage, TFeatureImage>::BinaryStatisticsKeepNObjectsImageFilter()
: m_BackgroundValue(NumericTraits<OutputImagePixelType>::NonpositiveMin())
, m_ForegroundValue(NumericTraits<OutputImagePixelType>::max())
, m_Attribute(LabelObjectType::MEAN)
{
this->SetNumberOfRequiredInputs(2);
}
template <typename TInputImage, typename TFeatureImage>
void
BinaryStatisticsKeepNObjectsImageFilter<TInputImage, TFeatureImage>::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// We need all the input.
InputImagePointer input = const_cast<InputImageType *>(this->GetInput());
if (input)
{
input->SetRequestedRegion(input->GetLargestPossibleRegion());
}
}
template <typename TInputImage, typename TFeatureImage>
void
BinaryStatisticsKeepNObjectsImageFilter<TInputImage, TFeatureImage>::EnlargeOutputRequestedRegion(DataObject *)
{
this->GetOutput()->SetRequestedRegion(this->GetOutput()->GetLargestPossibleRegion());
}
template <typename TInputImage, typename TFeatureImage>
void
BinaryStatisticsKeepNObjectsImageFilter<TInputImage, TFeatureImage>::GenerateData()
{
// Create a process accumulator for tracking the progress of this minipipeline
auto progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter(this);
// Allocate the output
this->AllocateOutputs();
auto labelizer = LabelizerType::New();
labelizer->SetInput(this->GetInput());
labelizer->SetInputForegroundValue(m_ForegroundValue);
labelizer->SetOutputBackgroundValue(m_BackgroundValue);
labelizer->SetFullyConnected(m_FullyConnected);
labelizer->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
progress->RegisterInternalFilter(labelizer, .3f);
auto valuator = LabelObjectValuatorType::New();
valuator->SetInput(labelizer->GetOutput());
valuator->SetFeatureImage(this->GetFeatureImage());
valuator->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
valuator->SetComputeHistogram(false);
if (m_Attribute != LabelObjectType::PERIMETER && m_Attribute != LabelObjectType::ROUNDNESS)
{
valuator->SetComputePerimeter(false);
}
if (m_Attribute == LabelObjectType::FERET_DIAMETER)
{
valuator->SetComputeFeretDiameter(true);
}
progress->RegisterInternalFilter(valuator, .3f);
auto opening = KeepNObjectsType::New();
opening->SetInput(valuator->GetOutput());
opening->SetNumberOfObjects(m_NumberOfObjects);
opening->SetReverseOrdering(m_ReverseOrdering);
opening->SetAttribute(m_Attribute);
opening->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
progress->RegisterInternalFilter(opening, .2f);
auto binarizer = BinarizerType::New();
binarizer->SetInput(opening->GetOutput());
binarizer->SetForegroundValue(m_ForegroundValue);
binarizer->SetBackgroundValue(m_BackgroundValue);
binarizer->SetBackgroundImage(this->GetInput());
binarizer->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
progress->RegisterInternalFilter(binarizer, .2f);
binarizer->GraftOutput(this->GetOutput());
binarizer->Update();
this->GraftOutput(binarizer->GetOutput());
}
template <typename TInputImage, typename TFeatureImage>
void
BinaryStatisticsKeepNObjectsImageFilter<TInputImage, TFeatureImage>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "FullyConnected: " << (m_FullyConnected ? "On" : "Off") << std::endl;
os << indent
<< "BackgroundValue: " << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_BackgroundValue)
<< std::endl;
os << indent
<< "ForegroundValue: " << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_ForegroundValue)
<< std::endl;
os << indent << "NumberOfObjects: " << m_NumberOfObjects << std::endl;
os << indent << "ReverseOrdering: " << m_ReverseOrdering << std::endl;
os << indent << "Attribute: " << LabelObjectType::GetNameFromAttribute(m_Attribute) << " (" << m_Attribute << ')'
<< std::endl;
}
} // end namespace itk
#endif
|