File: itkLabelMapMaskImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (402 lines) | stat: -rw-r--r-- 13,398 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkLabelMapMaskImageFilter_hxx
#define itkLabelMapMaskImageFilter_hxx

#include "itkNumericTraits.h"
#include "itkProgressReporter.h"
#include "itkImageRegionConstIterator.h"
#include "itkImageRegionIterator.h"
#include "itkImageAlgorithm.h"

namespace itk
{

template <typename TInputImage, typename TOutputImage>
LabelMapMaskImageFilter<TInputImage, TOutputImage>::LabelMapMaskImageFilter()
  : m_Label(NumericTraits<InputImagePixelType>::OneValue())
  , m_BackgroundValue(OutputImagePixelType{})

{
  this->SetNumberOfRequiredInputs(2);
  m_CropBorder.Fill(0);
  this->DynamicMultiThreadingOff();
}

template <typename TInputImage, typename TOutputImage>
void
LabelMapMaskImageFilter<TInputImage, TOutputImage>::GenerateInputRequestedRegion()
{
  // Call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // We need the whole input
  InputImagePointer input = const_cast<InputImageType *>(this->GetInput());
  if (!input)
  {
    return;
  }
  input->SetRequestedRegion(input->GetLargestPossibleRegion());
}

template <typename TInputImage, typename TOutputImage>
void
LabelMapMaskImageFilter<TInputImage, TOutputImage>::GenerateOutputInformation()
{

  if (m_Crop)
  {
    const InputImageType * input = this->GetInput();

    if (!(input->GetMTime() > m_CropTimeStamp) && !(this->GetMTime() > m_CropTimeStamp))
    {
      // Early exit, crop sizes already computed
      return;
    }

    // First, call the default implementation not to forget anything
    Superclass::GenerateOutputInformation();

    // Update the input if needed
    if (input->GetSource())
    {
      ProcessObject * upstream = input->GetSource();
      if (upstream)
      {
        // this->SetInput(nullptr);
        // std::cout << "Update the input (again?)." << std::endl;
        upstream->Update();
        // this->SetInput(input);
      }
    }

    // Prefetch image region and size
    InputImageRegionType cropRegion = input->GetLargestPossibleRegion();

    // Now the output image size can be computed
    if (m_Negated)
    {
      if (input->GetBackgroundValue() != m_Label)
      {
        // The "bad" case - the zone outside the object is at least partially
        // covered by the background, which is not explicitly defined.

        // simply do nothing for now
        // TODO: implement that part
        itkWarningMacro(
          << "Cropping according to background label is not yet implemented. The full image will be used.");
      }
      else
      {
        // Compute the bounding box of all the objects which don't have that label
        IndexType mins;
        mins.Fill(NumericTraits<IndexValueType>::max());
        IndexType maxs;
        maxs.Fill(NumericTraits<IndexValueType>::NonpositiveMin());
        for (typename InputImageType::ConstIterator loit(this->GetInput()); !loit.IsAtEnd(); ++loit)
        {
          if (loit.GetLabel() != m_Label)
          {
            // Iterate over all the lines
            typename LabelObjectType::ConstLineIterator lit(loit.GetLabelObject());
            while (!lit.IsAtEnd())
            {
              const IndexType & idx = lit.GetLine().GetIndex();
              LengthType        length = lit.GetLine().GetLength();

              // Update the mins and maxs
              for (unsigned int i = 0; i < ImageDimension; ++i)
              {
                if (idx[i] < mins[i])
                {
                  mins[i] = idx[i];
                }
                if (idx[i] > maxs[i])
                {
                  maxs[i] = idx[i];
                }
              }
              // Must fix the max for the axis 0
              if (idx[0] + (OffsetValueType)length > maxs[0])
              {
                maxs[0] = idx[0] + length - 1;
              }
              ++lit;
            }
          }
        }

        // Final computation
        SizeType regionSize;
        for (unsigned int i = 0; i < ImageDimension; ++i)
        {
          regionSize[i] = maxs[i] - mins[i] + 1;
        }
        cropRegion.SetIndex(mins);
        cropRegion.SetSize(regionSize);
      }
    }
    else
    {
      if (input->GetBackgroundValue() == m_Label)
      {
        // The other "bad" case - the label we want is not defined as a label object,
        // but implicitly, in the zones not defined.

        // simply do nothing for now
        // TODO: implement that part
        itkWarningMacro(
          << "Cropping according to background label is not yet implemented. The full image will be used.");
      }
      else
      {
        // Just find the bounding box of the object with that label

        const LabelObjectType * labelObject = input->GetLabelObject(m_Label);
        IndexType               mins;
        mins.Fill(NumericTraits<IndexValueType>::max());
        IndexType maxs;
        maxs.Fill(NumericTraits<IndexValueType>::NonpositiveMin());
        // Iterate over all the lines
        typename LabelObjectType::ConstLineIterator lit(labelObject);
        while (!lit.IsAtEnd())
        {
          const IndexType & idx = lit.GetLine().GetIndex();
          LengthType        length = lit.GetLine().GetLength();

          // Update the mins and maxs
          for (unsigned int i = 0; i < ImageDimension; ++i)
          {
            if (idx[i] < mins[i])
            {
              mins[i] = idx[i];
            }
            if (idx[i] > maxs[i])
            {
              maxs[i] = idx[i];
            }
          }
          // Must fix the max for the axis 0
          if (idx[0] + (OffsetValueType)length > maxs[0])
          {
            maxs[0] = idx[0] + length - 1;
          }
          ++lit;
        }
        // Final computation
        SizeType regionSize;
        for (unsigned int i = 0; i < ImageDimension; ++i)
        {
          regionSize[i] = maxs[i] - mins[i] + 1;
        }
        cropRegion.SetIndex(mins);
        cropRegion.SetSize(regionSize);
      }
    }

    // Pad by the crop border, but take care to not be larger than the largest
    // possible region of the input image
    cropRegion.PadByRadius(m_CropBorder);
    cropRegion.Crop(input->GetLargestPossibleRegion());

    // Finally set that region as the largest output region
    this->GetOutput()->SetLargestPossibleRegion(cropRegion);

    m_CropTimeStamp.Modified();
  }
  else
  {
    // No crop -> use the default implementation
    Superclass::GenerateOutputInformation();
  }
}

template <typename TInputImage, typename TOutputImage>
void
LabelMapMaskImageFilter<TInputImage, TOutputImage>::EnlargeOutputRequestedRegion(DataObject *)
{
  this->GetOutput()->SetRequestedRegion(this->GetOutput()->GetLargestPossibleRegion());
}

template <typename TInputImage, typename TOutputImage>
void
LabelMapMaskImageFilter<TInputImage, TOutputImage>::GenerateData()
{
  this->UpdateProgress(0.0f);
  this->AllocateOutputs();
  this->BeforeThreadedGenerateData();
  this->UpdateProgress(0.05f);

  this->GetMultiThreader()->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
  this->GetMultiThreader()->template ParallelizeImageRegion<OutputImageDimension>(
    this->GetOutput()->GetRequestedRegion(),
    [this](const OutputImageRegionType & outputRegionForThread) {
      this->DynamicThreadedGenerateData(outputRegionForThread);
    },
    nullptr);
  this->UpdateProgress(0.5f);

  auto * inImage = const_cast<InputImageType *>(this->GetInput());
  if (inImage->GetBackgroundValue() == m_Label)
  {
    // delegate to the superclass implementation to use the thread support for the label objects
    this->GetMultiThreader()->template ParallelizeImageRegion<OutputImageDimension>(
      this->GetOutput()->GetRequestedRegion(),
      [this](const OutputImageRegionType & outputRegionForThread) {
        this->SuperclassDynamicTGD(outputRegionForThread);
      },
      nullptr);
  }
  else
  {
    const LabelObjectType * labelObject = this->GetLabelMap()->GetLabelObject(m_Label);
    const OutputImageType * input2 = this->GetFeatureImage();
    OutputImageType *       output = this->GetOutput();

    if (!m_Negated)
    {
      typename LabelObjectType::ConstIndexIterator it(labelObject);
      while (!it.IsAtEnd())
      {
        const IndexType & idx = it.GetIndex();
        output->SetPixel(idx, input2->GetPixel(idx));
        ++it;
      }
    }
    else
    {
      // And mark the label object as background

      // Should we take care to not write outside the image ?
      bool       testIdxIsInside = m_Crop && (inImage->GetBackgroundValue() == m_Label) ^ m_Negated;
      RegionType outputRegion = output->GetLargestPossibleRegion();

      typename LabelObjectType::ConstIndexIterator it(labelObject);
      while (!it.IsAtEnd())
      {
        const IndexType & idx = it.GetIndex();
        if (!testIdxIsInside || outputRegion.IsInside(idx))
        {
          output->SetPixel(idx, m_BackgroundValue);
        }
        ++it;
      }
    }
  }

  this->UpdateProgress(0.99f);
  this->AfterThreadedGenerateData();
  this->UpdateProgress(1.0f);
}

template <typename TInputImage, typename TOutputImage>
void
LabelMapMaskImageFilter<TInputImage, TOutputImage>::DynamicThreadedGenerateData(
  const OutputImageRegionType & outputRegionForThread)
{
  OutputImageType *       output = this->GetOutput();
  auto *                  input = const_cast<InputImageType *>(this->GetInput());
  const OutputImageType * input2 = this->GetFeatureImage();

  // Keep the values from the feature image if the same pixel in the label image
  // equals the label given by the user. The other pixels are set to the background value.
  if ((input->GetBackgroundValue() == m_Label) ^ m_Negated)
  {
    // The user wants the mask to be the background of the label collection image
    // copy the feature image to the output image

    // Copy input2 region to output
    ImageAlgorithm::Copy(input2, output, outputRegionForThread, outputRegionForThread);
  }
  else
  {
    ImageRegionIterator<OutputImageType> outputIt(output, outputRegionForThread);

    for (outputIt.GoToBegin(); !outputIt.IsAtEnd(); ++outputIt)
    {
      outputIt.Set(m_BackgroundValue);
    }
  }
}

template <typename TInputImage, typename TOutputImage>
void
LabelMapMaskImageFilter<TInputImage, TOutputImage>::ThreadedProcessLabelObject(LabelObjectType * labelObject)
{
  OutputImageType *       output = this->GetOutput();
  auto *                  input = const_cast<InputImageType *>(this->GetInput());
  const OutputImageType * input2 = this->GetFeatureImage();

  if (!m_Negated)
  {
    // Keep the values from the feature image if the same pixel in the label image
    // equals the label given by the user. The other pixels are set to the background value.

    // Should we take care to not write outside the image ?
    bool       testIdxIsInside = m_Crop && (input->GetBackgroundValue() == m_Label) ^ m_Negated;
    RegionType outputRegion = output->GetLargestPossibleRegion();

    // The user wants the mask to be the background of the label collection image
    typename LabelObjectType::ConstIndexIterator it(labelObject);
    while (!it.IsAtEnd())
    {
      const IndexType & idx = it.GetIndex();
      if (!testIdxIsInside || outputRegion.IsInside(idx))
      {
        output->SetPixel(idx, m_BackgroundValue);
      }
      ++it;
    }
  }
  else
  {
    // Keep the pixels from the feature image if the same pixel from the label image
    // is not equal to the label provided by the user. The pixels with the label provided by the
    // user are set to the background value

    // And copy the feature image where the label objects are
    typename LabelObjectType::ConstIndexIterator it(labelObject);
    while (!it.IsAtEnd())
    {
      const IndexType & idx = it.GetIndex();
      output->SetPixel(idx, input2->GetPixel(idx));
      ++it;
    }
  }
}

template <typename TInputImage, typename TOutputImage>
void
LabelMapMaskImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Label: " << static_cast<typename NumericTraits<LabelType>::PrintType>(m_Label) << std::endl;
  os << indent
     << "BackgroundValue: " << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_BackgroundValue)
     << std::endl;
  os << indent << "Negated: " << m_Negated << std::endl;
  os << indent << "Crop: " << m_Crop << std::endl;
  os << indent << "CropBorder: " << m_CropBorder << std::endl;
  os << indent << "CropTimeStamp: " << static_cast<typename NumericTraits<TimeStamp>::PrintType>(m_CropTimeStamp)
     << std::endl;
}


} // end namespace itk
#endif