File: itkLabelStatisticsKeepNObjectsImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (124 lines) | stat: -rw-r--r-- 4,588 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkLabelStatisticsKeepNObjectsImageFilter_hxx
#define itkLabelStatisticsKeepNObjectsImageFilter_hxx

#include "itkProgressAccumulator.h"

namespace itk
{
template <typename TInputImage, typename TFeatureImage>
LabelStatisticsKeepNObjectsImageFilter<TInputImage, TFeatureImage>::LabelStatisticsKeepNObjectsImageFilter()
{
  m_BackgroundValue = NumericTraits<OutputImagePixelType>::NonpositiveMin();
  m_NumberOfObjects = 1;
  m_ReverseOrdering = false;
  m_Attribute = LabelObjectType::MEAN;
  this->SetNumberOfRequiredInputs(2);
}

template <typename TInputImage, typename TFeatureImage>
void
LabelStatisticsKeepNObjectsImageFilter<TInputImage, TFeatureImage>::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // We need all the input.
  InputImagePointer input = const_cast<InputImageType *>(this->GetInput());
  if (input)
  {
    input->SetRequestedRegion(input->GetLargestPossibleRegion());
  }
}

template <typename TInputImage, typename TFeatureImage>
void
LabelStatisticsKeepNObjectsImageFilter<TInputImage, TFeatureImage>::EnlargeOutputRequestedRegion(DataObject *)
{
  this->GetOutput()->SetRequestedRegion(this->GetOutput()->GetLargestPossibleRegion());
}

template <typename TInputImage, typename TFeatureImage>
void
LabelStatisticsKeepNObjectsImageFilter<TInputImage, TFeatureImage>::GenerateData()
{
  // Create a process accumulator for tracking the progress of this minipipeline
  auto progress = ProgressAccumulator::New();

  progress->SetMiniPipelineFilter(this);

  // Allocate the output
  this->AllocateOutputs();

  auto labelizer = LabelizerType::New();
  labelizer->SetInput(this->GetInput());
  labelizer->SetBackgroundValue(m_BackgroundValue);
  labelizer->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
  progress->RegisterInternalFilter(labelizer, .3f);

  auto valuator = LabelObjectValuatorType::New();
  valuator->SetInput(labelizer->GetOutput());
  valuator->SetFeatureImage(this->GetFeatureImage());
  valuator->SetLabelImage(this->GetInput());
  valuator->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
  valuator->SetComputeHistogram(false);
  if (m_Attribute != LabelObjectType::PERIMETER && m_Attribute != LabelObjectType::ROUNDNESS)
  {
    valuator->SetComputePerimeter(false);
  }
  if (m_Attribute == LabelObjectType::FERET_DIAMETER)
  {
    valuator->SetComputeFeretDiameter(true);
  }
  progress->RegisterInternalFilter(valuator, .3f);

  auto opening = KeepNObjectsType::New();
  opening->SetInput(valuator->GetOutput());
  opening->SetNumberOfObjects(m_NumberOfObjects);
  opening->SetReverseOrdering(m_ReverseOrdering);
  opening->SetAttribute(m_Attribute);
  opening->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
  progress->RegisterInternalFilter(opening, .2f);

  auto binarizer = BinarizerType::New();
  binarizer->SetInput(opening->GetOutput());
  binarizer->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
  progress->RegisterInternalFilter(binarizer, .2f);

  binarizer->GraftOutput(this->GetOutput());
  binarizer->Update();
  this->GraftOutput(binarizer->GetOutput());
}

template <typename TInputImage, typename TFeatureImage>
void
LabelStatisticsKeepNObjectsImageFilter<TInputImage, TFeatureImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent
     << "BackgroundValue: " << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_BackgroundValue)
     << std::endl;
  os << indent << "NumberOfObjects: " << m_NumberOfObjects << std::endl;
  os << indent << "ReverseOrdering: " << m_ReverseOrdering << std::endl;
  os << indent << "Attribute: " << LabelObjectType::GetNameFromAttribute(m_Attribute) << " (" << m_Attribute << ')'
     << std::endl;
}
} // end namespace itk
#endif