1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkStatisticsRelabelImageFilter_h
#define itkStatisticsRelabelImageFilter_h
#include "itkLabelImageToLabelMapFilter.h"
#include "itkStatisticsLabelMapFilter.h"
#include "itkStatisticsRelabelLabelMapFilter.h"
#include "itkLabelMapToLabelImageFilter.h"
namespace itk
{
/**
* \class StatisticsRelabelImageFilter
* \brief relabel objects according to their shape attributes
*
* StatisticsRelabelImageFilter relabel a labeled image according to the statistics attributes of
* the objects. The label produced are always consecutive.
*
* \author Gaetan Lehmann. Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France.
*
* This implementation was taken from the Insight Journal paper:
* https://www.insight-journal.org/browse/publication/176
*
* \sa StatisticsLabelObject, RelabelComponentImageFilter
* \ingroup ImageEnhancement MathematicalMorphologyImageFilters
* \ingroup ITKLabelMap
*/
template <typename TInputImage, typename TFeatureImage>
class ITK_TEMPLATE_EXPORT StatisticsRelabelImageFilter : public ImageToImageFilter<TInputImage, TInputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(StatisticsRelabelImageFilter);
/** Standard class type aliases. */
using Self = StatisticsRelabelImageFilter;
using Superclass = ImageToImageFilter<TInputImage, TInputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Some convenient type alias. */
using InputImageType = TInputImage;
using OutputImageType = TInputImage;
using InputImagePointer = typename InputImageType::Pointer;
using InputImageConstPointer = typename InputImageType::ConstPointer;
using InputImageRegionType = typename InputImageType::RegionType;
using InputImagePixelType = typename InputImageType::PixelType;
using OutputImagePointer = typename OutputImageType::Pointer;
using OutputImageConstPointer = typename OutputImageType::ConstPointer;
using OutputImageRegionType = typename OutputImageType::RegionType;
using OutputImagePixelType = typename OutputImageType::PixelType;
using FeatureImageType = TFeatureImage;
using FeatureImagePointer = typename FeatureImageType::Pointer;
using FeatureImageConstPointer = typename FeatureImageType::ConstPointer;
using FeatureImagePixelType = typename FeatureImageType::PixelType;
/** ImageDimension constants */
static constexpr unsigned int InputImageDimension = TInputImage::ImageDimension;
static constexpr unsigned int OutputImageDimension = TInputImage::ImageDimension;
static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;
using LabelObjectType = StatisticsLabelObject<InputImagePixelType, Self::ImageDimension>;
using LabelMapType = LabelMap<LabelObjectType>;
using LabelizerType = LabelImageToLabelMapFilter<InputImageType, LabelMapType>;
using LabelObjectValuatorType = StatisticsLabelMapFilter<LabelMapType, TFeatureImage>;
using AttributeType = typename LabelObjectType::AttributeType;
using RelabelType = StatisticsRelabelLabelMapFilter<LabelMapType>;
using BinarizerType = LabelMapToLabelImageFilter<LabelMapType, OutputImageType>;
/** Standard New method. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(StatisticsRelabelImageFilter);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(InputEqualityComparableCheck, (Concept::EqualityComparable<InputImagePixelType>));
itkConceptMacro(IntConvertibleToInputCheck, (Concept::Convertible<int, InputImagePixelType>));
itkConceptMacro(InputOStreamWritableCheck, (Concept::OStreamWritable<InputImagePixelType>));
// End concept checking
#endif
/**
* Set/Get the value used as "background" in the output image.
* Defaults to NumericTraits<PixelType>::NonpositiveMin().
*/
itkSetMacro(BackgroundValue, OutputImagePixelType);
itkGetConstMacro(BackgroundValue, OutputImagePixelType);
/**
* Set/Get the order of labeling of the objects. By default, the objects with
* the highest attribute values are labeled first. Set ReverseOrdering to true
* make the one with the smallest attributes be labeled first.
*/
itkGetConstMacro(ReverseOrdering, bool);
itkSetMacro(ReverseOrdering, bool);
itkBooleanMacro(ReverseOrdering);
/**
* Set/Get the attribute to use. Default is "Mean".
*/
itkGetConstMacro(Attribute, AttributeType);
itkSetMacro(Attribute, AttributeType);
void
SetAttribute(const std::string & s)
{
this->SetAttribute(LabelObjectType::GetAttributeFromName(s));
}
/** Set the feature image */
void
SetFeatureImage(TFeatureImage * input)
{
// Process object is not const-correct so the const casting is required.
this->SetNthInput(1, const_cast<TFeatureImage *>(input));
}
/** Get the feature image */
FeatureImageType *
GetFeatureImage()
{
return static_cast<FeatureImageType *>(const_cast<DataObject *>(this->ProcessObject::GetInput(1)));
}
/** Set the input image */
void
SetInput1(InputImageType * input)
{
this->SetInput(input);
}
/** Set the feature image */
void
SetInput2(FeatureImageType * input)
{
this->SetFeatureImage(input);
}
protected:
StatisticsRelabelImageFilter();
~StatisticsRelabelImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** StatisticsRelabelImageFilter needs the entire input be
* available. Thus, it needs to provide an implementation of
* GenerateInputRequestedRegion(). */
void
GenerateInputRequestedRegion() override;
/** StatisticsRelabelImageFilter will produce the entire output. */
void
EnlargeOutputRequestedRegion(DataObject * itkNotUsed(output)) override;
/** Single-threaded version of GenerateData. This filter delegates
* to GrayscaleGeodesicErodeImageFilter. */
void
GenerateData() override;
private:
OutputImagePixelType m_BackgroundValue{};
bool m_ReverseOrdering{};
AttributeType m_Attribute{};
}; // end of class
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkStatisticsRelabelImageFilter.hxx"
#endif
#endif
|