File: itkStatisticsLabelMapFilterGTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (333 lines) | stat: -rw-r--r-- 10,388 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkGTest.h"

#include "itkImage.h"
#include "itkLabelImageToStatisticsLabelMapFilter.h"
#include "itkImageRegionIterator.h"
#include <algorithm>


namespace
{

class StatisticsLabelMapFixture : public ::testing::Test
{
public:
  StatisticsLabelMapFixture() = default;
  ~StatisticsLabelMapFixture() override = default;

protected:
  void
  SetUp() override
  {}
  void
  TearDown() override
  {}

  template <unsigned int D, typename TPixelType = unsigned short>
  struct FixtureUtilities
  {
    static const unsigned int Dimension = D;

    using PixelType = TPixelType;
    using ImageType = itk::Image<PixelType, Dimension>;

    using LabelPixelType = unsigned char;
    using LabelImageType = itk::Image<LabelPixelType, Dimension>;

    using LabelObjectType = itk::StatisticsLabelObject<LabelPixelType, Dimension>;
    using StatisticsLabelMapType = itk::LabelMap<LabelObjectType>;


    static typename ImageType::Pointer
    CreateImage()
    {
      auto image = ImageType::New();

      typename ImageType::SizeType imageSize;
      imageSize.Fill(25);
      image->SetRegions(typename ImageType::RegionType(imageSize));
      image->Allocate();
      image->FillBuffer(0);

      return image;
    }

    static typename ImageType::Pointer
    CreateImageRandom(PixelType randMax = 500, unsigned int randSeed = 0)
    {
      auto image = ImageType::New();

      typename ImageType::SizeType imageSize;
      imageSize.Fill(25);
      image->SetRegions(typename ImageType::RegionType(imageSize));
      image->Allocate();
      image->FillBuffer(0);

      srand(randSeed);

      itk::ImageRegionIterator<ImageType> it(image, image->GetLargestPossibleRegion());
      while (!it.IsAtEnd())
      {
        it.Set(rand() % randMax);
        ++it;
      }
      return image;
    }


    static typename LabelImageType::Pointer
    CreateLabelImage()
    {
      auto image = LabelImageType::New();

      typename LabelImageType::SizeType imageSize;
      imageSize.Fill(25);
      image->SetRegions(typename ImageType::RegionType(imageSize));
      image->Allocate();
      image->FillBuffer(0);

      return image;
    }


    static typename LabelObjectType::ConstPointer
    ComputeLabelObject(const LabelImageType * labelImage,
                       const ImageType *      image,
                       const PixelType        label = 1,
                       const size_t           numberOfBins = 0)
    {

      auto l2s = itk::LabelImageToStatisticsLabelMapFilter<LabelImageType, ImageType>::New();
      l2s->SetInput1(labelImage);
      l2s->SetFeatureImage(image);
      l2s->ComputeFeretDiameterOn();
      l2s->ComputePerimeterOn();
      // l2s->ComputeOrientedBoundingBoxOn();
      l2s->ComputeHistogramOn();
      if (numberOfBins != 0)
      {
        l2s->SetNumberOfBins(numberOfBins);
      }
      l2s->Update();
      return l2s->GetOutput()->GetLabelObject(label);
    }

    static double
    ComputeExactMedian(const LabelObjectType * labelObject, const ImageType * image)
    {
      std::vector<PixelType>                       values;
      typename LabelObjectType::ConstIndexIterator it(labelObject);

      while (!it.IsAtEnd())
      {
        const typename ImageType::IndexType & idx = it.GetIndex();
        values.push_back(image->GetPixel(idx));
        ++it;
      }

      std::sort(values.begin(), values.end());

      assert(!values.empty());

      auto n1 = values.size() / 2;
      if (values.size() % 2 == 0)
      {
        return 0.5 * (static_cast<double>(values[n1]) + static_cast<double>(values[n1 - 1]));
      }
      return values[n1];
    }
  };
};
} // namespace


TEST_F(StatisticsLabelMapFixture, 2D_zero)
{
  using Utils = FixtureUtilities<2, unsigned char>;
  using namespace itk::GTest::TypedefsAndConstructors::Dimension2;

  auto image = Utils::CreateImage();
  auto labelImage = Utils ::CreateLabelImage();

  Utils::LabelPixelType label = 1;
  labelImage->FillBuffer(label);


  Utils::LabelObjectType::ConstPointer labelObject = Utils::ComputeLabelObject(labelImage, image, 1, 1 << 8);

  ASSERT_GT(labelObject->Size(), 0);
  EXPECT_NEAR(0.0, labelObject->GetMinimum(), 1e-12);
  EXPECT_NEAR(0.0, labelObject->GetMaximum(), 1e-12);
  EXPECT_NEAR(Utils::ComputeExactMedian(labelObject, image), labelObject->GetMedian(), 1e-12);
  EXPECT_NEAR(0.0, labelObject->GetSum(), 1e-12);
  EXPECT_NEAR(0.0, labelObject->GetVariance(), 1e-12);
  EXPECT_NEAR(0.0, labelObject->GetStandardDeviation(), 0.5);

  if (::testing::Test::HasFailure())
  {
    labelObject->Print(std::cout);
  }
}


TEST_F(StatisticsLabelMapFixture, 2D_ones_with_outliers)
{
  using Utils = FixtureUtilities<2, short>;
  using namespace itk::GTest::TypedefsAndConstructors::Dimension2;

  auto             image = Utils::CreateImage();
  Utils::PixelType value = 1;
  image->FillBuffer(value);

  // Test with outliers outside the label.
  image->SetPixel(itk::MakeIndex(0, 0), 32000);
  image->SetPixel(itk::MakeIndex(0, 1), -32000);


  auto                  labelImage = Utils ::CreateLabelImage();
  Utils::LabelPixelType label = 1;
  labelImage->FillBuffer(label);
  labelImage->SetPixel(itk::MakeIndex(0, 0), 0);
  labelImage->SetPixel(itk::MakeIndex(0, 1), 0);

  Utils::LabelObjectType::ConstPointer labelObject = Utils::ComputeLabelObject(labelImage, image, label, 1 << 16);

  ASSERT_GT(labelObject->Size(), 0);
  EXPECT_NEAR(value, labelObject->GetMinimum(), 1e-12);
  EXPECT_NEAR(value, labelObject->GetMaximum(), 1e-12);
  EXPECT_NEAR(Utils::ComputeExactMedian(labelObject, image), labelObject->GetMedian(), 1e-12);
  EXPECT_NEAR(25 * 25 - 2, labelObject->GetSum(), 1e-12);
  EXPECT_NEAR(0.0, labelObject->GetVariance(), 1e-12);
  EXPECT_NEAR(0.0, labelObject->GetStandardDeviation(), 1e-12);

  if (::testing::Test::HasFailure())
  {
    labelObject->Print(std::cout);
  }
}

TEST_F(StatisticsLabelMapFixture, 2D_rand_with_outliers)
{
  using Utils = FixtureUtilities<2, short>;
  using namespace itk::GTest::TypedefsAndConstructors::Dimension2;

  auto image = Utils::CreateImageRandom(500, 0);
  auto labelImage = Utils ::CreateLabelImage();

  // Test with outliers outside the label.
  image->SetPixel(itk::MakeIndex(0, 0), 32000);
  image->SetPixel(itk::MakeIndex(0, 1), -2000);
  // Set min/max in label
  image->SetPixel(itk::MakeIndex(0, 2), 0);
  image->SetPixel(itk::MakeIndex(0, 3), 500);

  Utils::LabelPixelType label = 1;
  labelImage->FillBuffer(label);
  labelImage->SetPixel(itk::MakeIndex(0, 0), 0);
  labelImage->SetPixel(itk::MakeIndex(0, 1), 0);


  Utils::LabelObjectType::ConstPointer labelObject = Utils::ComputeLabelObject(labelImage, image, label, 1 << 16);

  ASSERT_GT(labelObject->Size(), 0);
  EXPECT_NEAR(0.0, labelObject->GetMinimum(), 1e-12);
  EXPECT_NEAR(500.0, labelObject->GetMaximum(), 1e-12);
  EXPECT_NEAR(Utils::ComputeExactMedian(labelObject, image), labelObject->GetMedian(), 1e-12);

  if (::testing::Test::HasFailure())
  {
    labelObject->Print(std::cout);
  }
}


TEST_F(StatisticsLabelMapFixture, 2D_even)
{
  using Utils = FixtureUtilities<2, unsigned char>;
  using namespace itk::GTest::TypedefsAndConstructors::Dimension2;

  auto image = Utils::CreateImage();
  auto labelImage = Utils ::CreateLabelImage();

  // Set label with two elements far apart, the median should be average
  image->SetPixel(itk::MakeIndex(0, 0), 10);
  image->SetPixel(itk::MakeIndex(0, 1), 100);
  image->SetPixel(itk::MakeIndex(0, 2), 1);
  image->SetPixel(itk::MakeIndex(0, 3), 200);

  Utils::LabelPixelType label = 1;
  labelImage->SetPixel(itk::MakeIndex(0, 0), label);
  labelImage->SetPixel(itk::MakeIndex(0, 1), label);
  labelImage->SetPixel(itk::MakeIndex(0, 2), label);
  labelImage->SetPixel(itk::MakeIndex(0, 3), label);


  Utils::LabelObjectType::ConstPointer labelObject = Utils::ComputeLabelObject(labelImage, image, label, 1 << 8);

  ASSERT_GT(labelObject->Size(), 0);
  EXPECT_NEAR(1.0, labelObject->GetMinimum(), 1e-12);
  EXPECT_NEAR(200.0, labelObject->GetMaximum(), 1e-12);
  EXPECT_NEAR(Utils::ComputeExactMedian(labelObject, image), labelObject->GetMedian(), 1e-12);
  EXPECT_NEAR(311.0, labelObject->GetSum(), 1e-12);
  EXPECT_NEAR(8640.25, labelObject->GetVariance(), 1e-10);
  EXPECT_NEAR(92.95294, labelObject->GetStandardDeviation(), 1e-5);

  if (::testing::Test::HasFailure())
  {
    labelObject->Print(std::cout);
  }
}


TEST_F(StatisticsLabelMapFixture, 2D_three)
{
  using Utils = FixtureUtilities<2, unsigned char>;
  using namespace itk::GTest::TypedefsAndConstructors::Dimension2;

  auto image = Utils::CreateImage();
  auto labelImage = Utils ::CreateLabelImage();

  // Set label with two elements far apart, the median should be average
  image->SetPixel(itk::MakeIndex(0, 0), 1);
  image->SetPixel(itk::MakeIndex(0, 1), 3);
  image->SetPixel(itk::MakeIndex(0, 2), 10);

  Utils::LabelPixelType label = 1;
  labelImage->SetPixel(itk::MakeIndex(0, 0), label);
  labelImage->SetPixel(itk::MakeIndex(0, 1), label);
  labelImage->SetPixel(itk::MakeIndex(0, 2), label);


  Utils::LabelObjectType::ConstPointer labelObject = Utils::ComputeLabelObject(labelImage, image, label, 1 << 8);

  ASSERT_GT(labelObject->Size(), 0);
  EXPECT_NEAR(1.0, labelObject->GetMinimum(), 1e-12);
  EXPECT_NEAR(10.0, labelObject->GetMaximum(), 1e-12);
  EXPECT_NEAR(Utils::ComputeExactMedian(labelObject, image), labelObject->GetMedian(), 1e-12);
  EXPECT_NEAR(14.0, labelObject->GetSum(), 1e-12);
  EXPECT_NEAR(22.33333, labelObject->GetVariance(), 1e-5);
  EXPECT_NEAR(4.725815, labelObject->GetStandardDeviation(), 1e-5);

  if (::testing::Test::HasFailure())
  {
    labelObject->Print(std::cout);
  }
}