1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkDiscreteGaussianCurvatureQuadEdgeMeshFilter_h
#define itkDiscreteGaussianCurvatureQuadEdgeMeshFilter_h
#include "itkDiscreteCurvatureQuadEdgeMeshFilter.h"
#include "itkMath.h"
namespace itk
{
/**
* \class DiscreteGaussianCurvatureQuadEdgeMeshFilter
* \brief see the following paper
* title: Discrete Differential-Geometry Operators for Triangulated 2-Manifolds
* authors: Mark Meyer, Mathieu Desbrun, Peter Schroder, Alan H. Barr
* conference: VisMath '02
* location: Berlin (Germany)
* \author: Arnaud Gelas, Alexandre Gouaillard
* \ingroup ITKQuadEdgeMeshFiltering
*/
template <typename TInputMesh, typename TOutputMesh = TInputMesh>
class ITK_TEMPLATE_EXPORT DiscreteGaussianCurvatureQuadEdgeMeshFilter
: public DiscreteCurvatureQuadEdgeMeshFilter<TInputMesh, TOutputMesh>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(DiscreteGaussianCurvatureQuadEdgeMeshFilter);
using Self = DiscreteGaussianCurvatureQuadEdgeMeshFilter;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using Superclass = DiscreteCurvatureQuadEdgeMeshFilter<TInputMesh, TOutputMesh>;
using typename Superclass::InputMeshType;
using typename Superclass::InputMeshPointer;
using typename Superclass::OutputMeshType;
using typename Superclass::OutputMeshPointer;
using typename Superclass::OutputPointsContainerPointer;
using typename Superclass::OutputPointsContainerIterator;
using typename Superclass::OutputPointType;
using typename Superclass::OutputVectorType;
using typename Superclass::OutputCoordType;
using typename Superclass::OutputPointIdentifier;
using typename Superclass::OutputCellIdentifier;
using typename Superclass::OutputQEType;
using typename Superclass::OutputMeshTraits;
using typename Superclass::OutputCurvatureType;
using typename Superclass::TriangleType;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(DiscreteGaussianCurvatureQuadEdgeMeshFilter);
/** New macro for creation of through a Smart Pointer */
itkNewMacro(Self);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(OutputIsFloatingPointCheck, (Concept::IsFloatingPoint<OutputCurvatureType>));
// End concept checking
#endif
protected:
DiscreteGaussianCurvatureQuadEdgeMeshFilter() = default;
~DiscreteGaussianCurvatureQuadEdgeMeshFilter() override = default;
OutputCurvatureType
EstimateCurvature(const OutputPointType & iP) override
{
OutputMeshPointer output = this->GetOutput();
OutputQEType * qe = iP.GetEdge();
if (qe != nullptr)
{
OutputQEType * qe_it = qe;
OutputQEType * qe_it2;
OutputPointType q0, q1;
OutputCurvatureType sum_theta = 0.;
OutputCurvatureType area = 0.;
do
{
// cell_id = qe_it->GetLeft();
qe_it2 = qe_it->GetOnext();
q0 = output->GetPoint(qe_it->GetDestination());
q1 = output->GetPoint(qe_it2->GetDestination());
// Compute Angle;
sum_theta += static_cast<OutputCurvatureType>(TriangleType::ComputeAngle(q0, iP, q1));
area += this->ComputeMixedArea(qe_it, qe_it2);
qe_it = qe_it2;
} while (qe_it != qe);
return (2.0 * itk::Math::pi - sum_theta) / area;
}
return 0.;
}
};
} // namespace itk
#endif
|