1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkDiscreteMeanCurvatureQuadEdgeMeshFilter_h
#define itkDiscreteMeanCurvatureQuadEdgeMeshFilter_h
#include "itkDiscreteCurvatureQuadEdgeMeshFilter.h"
#include "itkQuadEdgeMeshParamMatrixCoefficients.h"
namespace itk
{
/**
* \class DiscreteMeanCurvatureQuadEdgeMeshFilter
* \brief see the following paper
* title: Discrete Differential-Geometry Operators for Triangulated 2-Manifolds
* authors: Mark Meyer, Mathieu Desbrun, Peter Schroder, Alan H. Barr
* conference: VisMath '02
* location: Berlin (Germany)
* \ingroup ITKQuadEdgeMeshFiltering
*/
template <typename TInputMesh, typename TOutputMesh = TInputMesh>
class ITK_TEMPLATE_EXPORT DiscreteMeanCurvatureQuadEdgeMeshFilter
: public DiscreteCurvatureQuadEdgeMeshFilter<TInputMesh, TOutputMesh>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(DiscreteMeanCurvatureQuadEdgeMeshFilter);
using Self = DiscreteMeanCurvatureQuadEdgeMeshFilter;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using Superclass = DiscreteCurvatureQuadEdgeMeshFilter<TInputMesh, TOutputMesh>;
using typename Superclass::InputMeshType;
using typename Superclass::InputMeshPointer;
using typename Superclass::OutputMeshType;
using typename Superclass::OutputMeshPointer;
using typename Superclass::OutputPointsContainerPointer;
using typename Superclass::OutputPointsContainerIterator;
using typename Superclass::OutputPointType;
using typename Superclass::OutputVectorType;
using typename Superclass::OutputCoordType;
using typename Superclass::OutputPointIdentifier;
using typename Superclass::OutputCellIdentifier;
using typename Superclass::OutputQEType;
using typename Superclass::OutputMeshTraits;
using typename Superclass::OutputCurvatureType;
using typename Superclass::TriangleType;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(DiscreteMeanCurvatureQuadEdgeMeshFilter);
/** New macro for creation of through a Smart Pointer */
itkNewMacro(Self);
using CoefficientType = ConformalMatrixCoefficients<OutputMeshType>;
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(OutputIsFloatingPointCheck, (Concept::IsFloatingPoint<OutputCurvatureType>));
// End concept checking
#endif
protected:
DiscreteMeanCurvatureQuadEdgeMeshFilter() = default;
~DiscreteMeanCurvatureQuadEdgeMeshFilter() override = default;
OutputCurvatureType
EstimateCurvature(const OutputPointType & iP) override
{
OutputMeshPointer output = this->GetOutput();
OutputQEType * qe = iP.GetEdge();
OutputCurvatureType oH(0.);
OutputVectorType Laplace;
Laplace.Fill(0.);
OutputCurvatureType area(0.);
OutputVectorType normal;
normal.Fill(0.);
if (qe != nullptr)
{
if (qe != qe->GetOnext())
{
CoefficientType coefficent;
OutputQEType * qe_it = qe;
OutputQEType * qe_it2;
OutputCurvatureType temp_area;
OutputCoordType temp_coeff;
OutputPointType q0, q1;
OutputVectorType face_normal;
do
{
qe_it2 = qe_it->GetOnext();
q0 = output->GetPoint(qe_it->GetDestination());
q1 = output->GetPoint(qe_it2->GetDestination());
temp_coeff = coefficent(output, qe_it);
Laplace += temp_coeff * (iP - q0);
temp_area = this->ComputeMixedArea(qe_it, qe_it2);
area += temp_area;
face_normal = TriangleType::ComputeNormal(q0, iP, q1);
normal += face_normal;
qe_it = qe_it2;
} while (qe_it != qe);
if (area < 1e-6)
{
oH = 0.;
}
else
{
if (normal.GetSquaredNorm() > 0.)
{
normal.Normalize();
Laplace *= 0.25 / area;
oH = Laplace * normal;
}
else
{
oH = 0.;
}
}
}
}
return oH;
}
};
} // namespace itk
#endif
|