File: itkBinomialBlurImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (256 lines) | stat: -rw-r--r-- 8,589 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkBinomialBlurImageFilter_hxx
#define itkBinomialBlurImageFilter_hxx

#include "vnl/vnl_vector_fixed.h"
#include "itkProgressReporter.h"
#include "itkImageRegion.h"
#include "itkImageRegionConstIterator.h"
#include "itkImageRegionReverseIterator.h"
#include <algorithm> // For min and max.

namespace itk
{
template <typename TInputImage, typename TOutputImage>
BinomialBlurImageFilter<TInputImage, TOutputImage>::BinomialBlurImageFilter()
{
  itkDebugMacro("BinomialBlurImageFilter::BinomialBlurImageFilter() called");

  // The default is to just do one repetition
  m_Repetitions = 1;
}

template <typename TInputImage, typename TOutputImage>
void
BinomialBlurImageFilter<TInputImage, TOutputImage>::GenerateInputRequestedRegion()
{
  itkDebugMacro("BinomialBlurImageFilter::GenerateInputRequestedRegion() called");

  Superclass::GenerateInputRequestedRegion();

  InputImagePointer  inputPtr = const_cast<TInputImage *>(this->GetInput(0));
  OutputImagePointer outputPtr = this->GetOutput(0);

  if (!inputPtr || !outputPtr)
  {
    return;
  }

  typename TOutputImage::RegionType           outputRegion;
  typename TInputImage::RegionType            inputRegion;
  typename TInputImage::RegionType::SizeType  inputSize;
  typename TInputImage::RegionType::IndexType inputIndex;

  outputRegion = outputPtr->GetRequestedRegion();

  // This filter needs a m_Repetitions pixel border about the output
  // (clamped of course at the true boundaries of the input image)
  inputRegion = outputRegion;

  inputSize = inputRegion.GetSize();
  inputIndex = inputRegion.GetIndex();

  typename TInputImage::RegionType::IndexType inputLargestPossibleRegionIndex =
    inputPtr->GetLargestPossibleRegion().GetIndex();
  typename TInputImage::RegionType::SizeType inputLargestPossibleRegionSize =
    inputPtr->GetLargestPossibleRegion().GetSize();

  for (unsigned int i = 0; i < inputPtr->GetImageDimension(); ++i)
  {
    inputIndex[i] -= m_Repetitions;
    inputIndex[i] = std::max(inputIndex[i], inputLargestPossibleRegionIndex[i]);

    inputSize[i] += m_Repetitions;
    inputSize[i] = std::min(inputSize[i], inputLargestPossibleRegionSize[i]);
  }

  inputRegion.SetIndex(inputIndex);
  inputRegion.SetSize(inputSize);

  inputPtr->SetRequestedRegion(inputRegion);
}

template <typename TInputImage, typename TOutputImage>
void
BinomialBlurImageFilter<TInputImage, TOutputImage>::GenerateData()
{
  itkDebugMacro("BinomialBlurImageFilter::GenerateData() called");

  // Get the input and output pointers
  InputImageConstPointer inputPtr = this->GetInput(0);
  OutputImagePointer     outputPtr = this->GetOutput(0);

  // Allocate the output
  outputPtr->SetBufferedRegion(outputPtr->GetRequestedRegion());
  outputPtr->Allocate();

  // Create a temporary image used while processing the image
  // Processing with doubles eliminates possible rounding artifacts which may
  // accumulate over repeated integer division
  using TTempImage = Image<double, NDimensions>;
  auto tempPtr = TTempImage::New();

  typename TTempImage::RegionType tempRegion;
  tempRegion = inputPtr->GetRequestedRegion();

  tempPtr->SetRegions(tempRegion);
  tempPtr->Allocate();

  // How big is the input image?
  typename TInputImage::SizeType  size = inputPtr->GetRequestedRegion().GetSize();
  typename TInputImage::IndexType startIndex = inputPtr->GetRequestedRegion().GetIndex();

  // Iterator Typedefs for this routine
  using TempIterator = ImageRegionIterator<TTempImage>;
  using TempReverseIterator = ImageRegionReverseIterator<TTempImage>;
  using InputIterator = ImageRegionConstIterator<TInputImage>;
  using OutputIterator = ImageRegionIterator<TOutputImage>;

  // Create a progress reporter
  ProgressReporter progress(
    this, 0, (outputPtr->GetRequestedRegion().GetNumberOfPixels()) * m_Repetitions * 2 * NDimensions);

  // Copy the input image to the temporary image
  TempIterator  tempIt(tempPtr, tempPtr->GetRequestedRegion());
  InputIterator inputIt(inputPtr, inputPtr->GetRequestedRegion());

  for (inputIt.GoToBegin(), tempIt.GoToBegin(); !tempIt.IsAtEnd(); ++tempIt, ++inputIt)
  {
    tempIt.Set(static_cast<double>(inputIt.Get()));
  }

  // Define a few indices that will be used to translate from an input pixel
  // to an output pixel
  typename TTempImage::IndexType index;
  typename TTempImage::IndexType indexShift;

  // Temporary pixel storage
  double pixelA, pixelB;

  // walk the output image forwards and compute blur
  for (unsigned int rep = 0; rep < m_Repetitions; ++rep)
  {
    itkDebugMacro("Repetition #" << rep);

    // blur each dimension
    for (unsigned int dim = 0; dim < NDimensions; ++dim)
    {
      TempIterator tempItDir(tempPtr, tempPtr->GetRequestedRegion());
      tempItDir.GoToBegin();
      while (!tempItDir.IsAtEnd())
      {
        // determine the index of the output pixel
        index = tempItDir.GetIndex();

        if (index[dim] < (startIndex[dim] + static_cast<typename TTempImage::OffsetValueType>(size[dim]) - 1))
        {
          // Figure out the location of the "neighbor" pixel
          for (unsigned int i = 0; i < NDimensions; ++i)
          {
            if (i == dim)
            {
              indexShift.m_InternalArray[i] = index.m_InternalArray[i] + 1;
            }
            else
            {
              indexShift.m_InternalArray[i] = index.m_InternalArray[i];
            }
          }

          // Average the pixel of interest and shifted pixel
          pixelA = tempPtr->GetPixel(index);
          pixelB = tempPtr->GetPixel(indexShift);

          pixelA += pixelB;
          pixelA = pixelA / 2.0;

          tempPtr->SetPixel(index, pixelA);
          progress.CompletedPixel();
        }

        ++tempItDir;
      } // end walk the image forwards

      itkDebugMacro("End processing forward dimension " << dim);

      //----------------------Reverse pass----------------------
      TempReverseIterator tempReverseIt(tempPtr, tempPtr->GetRequestedRegion());

      tempReverseIt.GoToBegin();

      while (!tempReverseIt.IsAtEnd())
      {
        // determine the index of the output pixel
        index = tempReverseIt.GetIndex();

        if (index[dim] > startIndex[dim])
        {
          // Figure out the location of the "neighbor" pixel
          for (unsigned int i = 0; i < NDimensions; ++i)
          {
            if (i == dim)
            {
              indexShift.m_InternalArray[i] = index.m_InternalArray[i] - 1;
            }
            else
            {
              indexShift.m_InternalArray[i] = index.m_InternalArray[i];
            }
          }

          // Average the pixel of interest and shifted pixel
          pixelA = tempPtr->GetPixel(index);
          pixelB = tempPtr->GetPixel(indexShift);

          pixelA += pixelB;
          pixelA = pixelA / 2;

          tempPtr->SetPixel(index, pixelA);
          progress.CompletedPixel();
        }

        ++tempReverseIt;
      } // end walk the image backwards
    }   // end dimension loop
  }     // end number of repetitions loop

  // Now, copy the temporary image to the output image. Note that the temp
  // buffer iterator walks a region defined by the output
  using OutputIterator = ImageRegionIterator<TOutputImage>;

  OutputIterator outIt(outputPtr, outputPtr->GetRequestedRegion());
  TempIterator   tempIt2(tempPtr, outputPtr->GetRequestedRegion());

  for (outIt.GoToBegin(), tempIt2.GoToBegin(); !outIt.IsAtEnd(); ++outIt, ++tempIt2)
  {
    outIt.Set(static_cast<PixelType>(tempIt2.Get()));
  }
}

template <typename TInputImage, typename TOutputImage>
void
BinomialBlurImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Number of repetitions: " << m_Repetitions << std::endl;
}
} // namespace itk

#endif