1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkDiscreteGaussianImageFilter_h
#define itkDiscreteGaussianImageFilter_h
#include "itkGaussianOperator.h"
#include "itkImageToImageFilter.h"
#include "itkImage.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
namespace itk
{
/**
* \class DiscreteGaussianImageFilter
* \brief Blurs an image by separable convolution with discrete gaussian kernels.
* This filter performs Gaussian blurring by separable convolution of an image
* and a discrete Gaussian operator (kernel).
*
* The Gaussian operator used here was described by Tony Lindeberg (Discrete
* Scale-Space Theory and the Scale-Space Primal Sketch. Dissertation. Royal
* Institute of Technology, Stockholm, Sweden. May 1991.) The Gaussian kernel
* used here was designed so that smoothing and derivative operations commute
* after discretization.
*
* The variance or standard deviation (sigma) will be evaluated as pixel units
* if SetUseImageSpacing is off (false) or as physical units if
* SetUseImageSpacing is on (true, default). The variance can be set
* independently in each dimension.
*
* When the Gaussian kernel is small, this filter tends to run faster than
* itk::RecursiveGaussianImageFilter.
*
* \sa GaussianOperator
* \sa Image
* \sa Neighborhood
* \sa NeighborhoodOperator
* \sa RecursiveGaussianImageFilter
*
* \ingroup ImageEnhancement
* \ingroup ImageFeatureExtraction
* \ingroup ITKSmoothing
*
* \sphinx
* \sphinxexample{Filtering/Smoothing/SmoothWithRecursiveGaussian,Computes the smoothing with Gaussian kernel}
* \endsphinx
*/
template <typename TInputImage, typename TOutputImage = TInputImage>
class ITK_TEMPLATE_EXPORT DiscreteGaussianImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(DiscreteGaussianImageFilter);
/** Standard class type aliases. */
using Self = DiscreteGaussianImageFilter;
using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(DiscreteGaussianImageFilter);
/** Image type information. */
using InputImageType = TInputImage;
using OutputImageType = TOutputImage;
/** Extract some information from the image types. Dimensionality
* of the two images is assumed to be the same. */
using OutputPixelType = typename TOutputImage::PixelType;
using OutputInternalPixelType = typename TOutputImage::InternalPixelType;
using InputPixelType = typename TInputImage::PixelType;
using InputInternalPixelType = typename TInputImage::InternalPixelType;
/** Pixel value type for Vector pixel types **/
using InputPixelValueType = typename NumericTraits<InputPixelType>::ValueType;
using OutputPixelValueType = typename NumericTraits<OutputPixelType>::ValueType;
/** Extract some information from the image types. Dimensionality
* of the two images is assumed to be the same. */
static constexpr unsigned int ImageDimension = TOutputImage::ImageDimension;
/** Type of the pixel to use for intermediate results */
using RealOutputPixelType = typename NumericTraits<OutputPixelType>::RealType;
using RealOutputImageType = Image<OutputPixelType, ImageDimension>;
using RealOutputPixelValueType = typename NumericTraits<RealOutputPixelType>::ValueType;
/** Typedef to describe the boundary condition. */
using BoundaryConditionType = ImageBoundaryCondition<TInputImage>;
using InputBoundaryConditionPointerType = BoundaryConditionType *;
using InputDefaultBoundaryConditionType = ZeroFluxNeumannBoundaryCondition<TInputImage>;
using RealBoundaryConditionPointerType = ImageBoundaryCondition<RealOutputImageType> *;
using RealDefaultBoundaryConditionType = ZeroFluxNeumannBoundaryCondition<RealOutputImageType>;
/** Typedef of double containers */
using ArrayType = FixedArray<double, Self::ImageDimension>;
using SigmaArrayType = ArrayType;
using ScalarRealType = double;
/** Type of kernel to be used in blurring */
using KernelType = GaussianOperator<RealOutputPixelValueType, ImageDimension>;
using RadiusType = typename KernelType::RadiusType;
/** The variance for the discrete Gaussian kernel. Sets the variance
* independently for each dimension, but
* see also SetVariance(const double v). The default is 0.0 in each
* dimension. If UseImageSpacing is true, the units are the physical units
* of your image. If UseImageSpacing is false then the units are
* pixels. */
itkSetMacro(Variance, ArrayType);
itkGetConstMacro(Variance, const ArrayType);
/** The algorithm will size the discrete kernel so that the error
* resulting from truncation of the kernel is no greater than
* MaximumError. The default is 0.01 in each dimension. */
itkSetMacro(MaximumError, ArrayType);
itkGetConstMacro(MaximumError, const ArrayType);
/** Set the kernel to be no wider than MaximumKernelWidth pixels,
* even if MaximumError demands it. The default is 32 pixels. */
itkGetConstMacro(MaximumKernelWidth, unsigned int);
itkSetMacro(MaximumKernelWidth, unsigned int);
/** Set the number of dimensions to smooth. Defaults to the image
* dimension. Can be set to less than ImageDimension, smoothing all
* the dimensions less than FilterDimensionality. For instance, to
* smooth the slices of a volume without smoothing in Z, set the
* FilterDimensionality to 2. */
itkGetConstMacro(FilterDimensionality, unsigned int);
itkSetMacro(FilterDimensionality, unsigned int);
/** Set/get the boundary condition. */
itkSetMacro(InputBoundaryCondition, InputBoundaryConditionPointerType);
itkGetConstMacro(InputBoundaryCondition, InputBoundaryConditionPointerType);
itkSetMacro(RealBoundaryCondition, RealBoundaryConditionPointerType);
itkGetConstMacro(RealBoundaryCondition, RealBoundaryConditionPointerType);
/** Convenience Set methods for setting all dimensional parameters
* to the same values. */
void
SetVariance(const typename ArrayType::ValueType v)
{
m_Variance.Fill(v);
this->Modified();
}
void
SetMaximumError(const typename ArrayType::ValueType v)
{
m_MaximumError.Fill(v);
this->Modified();
}
void
SetVariance(const double * v)
{
ArrayType dv;
for (unsigned int i = 0; i < ImageDimension; ++i)
{
dv[i] = v[i];
}
this->SetVariance(dv);
}
void
SetVariance(const float * v)
{
ArrayType dv;
for (unsigned int i = 0; i < ImageDimension; ++i)
{
dv[i] = v[i];
}
this->SetVariance(dv);
}
/** Set the standard deviation of the Gaussian used for smoothing.
* Sigma is measured in the units of image spacing. */
void
SetSigma(const ArrayType & sigma)
{
ArrayType variance;
for (unsigned int i = 0; i < ImageDimension; ++i)
{
variance[i] = sigma[i] * sigma[i];
}
this->SetVariance(variance);
}
/** SetSigmaArray is preserved for interface
* backwards compatibility. */
void
SetSigmaArray(const ArrayType & sigmas)
{
this->SetSigma(sigmas);
}
void
SetSigma(double sigma)
{
this->SetVariance(sigma * sigma);
}
/** Get the Sigma value. */
ArrayType
GetSigmaArray() const
{
ArrayType sigmas;
for (unsigned int i = 0; i < ImageDimension; ++i)
{
sigmas[i] = std::sqrt(m_Variance[i]);
}
return sigmas;
}
/** Get the Sigma scalar. If the Sigma is anisotropic, we will just
* return the Sigma along the first dimension. */
double
GetSigma() const
{
return std::sqrt(m_Variance[0]);
}
void
SetMaximumError(const double * v)
{
ArrayType dv;
for (unsigned int i = 0; i < ImageDimension; ++i)
{
dv[i] = v[i];
}
this->SetMaximumError(dv);
}
void
SetMaximumError(const float * v)
{
ArrayType dv;
for (unsigned int i = 0; i < ImageDimension; ++i)
{
dv[i] = v[i];
}
this->SetMaximumError(dv);
}
/** Get the radius of the generated directional kernel */
unsigned int
GetKernelRadius(const unsigned int dimension) const;
/** Get the radius of the separable kernel in each direction */
ArrayType
GetKernelRadius() const;
/** Get the size of the separable kernel in each direction.
* size[i] = radius[i] * 2 + 1 */
ArrayType
GetKernelSize() const;
/** Set/Get whether or not the filter will use the spacing of the input
* image in its calculations. Use On to take the image spacing information
* into account and to specify the Gaussian variance in real world units;
* use Off to ignore the image spacing and to specify the Gaussian variance
* in voxel units. Default is On. */
itkSetMacro(UseImageSpacing, bool);
itkGetConstMacro(UseImageSpacing, bool);
itkBooleanMacro(UseImageSpacing);
#if !defined(ITK_FUTURE_LEGACY_REMOVE)
/** Use the image spacing information in calculations. Use this option if you
* want to specify Gaussian variance in real world units. Default is
* ImageSpacingOn.
* \deprecated Use DiscreteGaussianImageFilter::UseImageSpacingOn instead. */
void
SetUseImageSpacingOn()
{
this->SetUseImageSpacing(true);
}
/** Ignore the image spacing. Use this option if you want to specify Gaussian
variance in pixels. Default is ImageSpacingOn.
\deprecated Use DiscreteGaussianImageFilter::UseImageSpacingOff instead. */
void
SetUseImageSpacingOff()
{
this->SetUseImageSpacing(false);
}
#endif
/** \brief Set/Get number of pieces to divide the input for the
* internal composite pipeline. The upstream pipeline will not be
* effected.
*
* The default value is $ImageDimension^2$.
*
* This parameter was introduced to reduce the memory used by images
* internally, at the cost of performance.
*/
itkLegacyMacro(unsigned int GetInternalNumberOfStreamDivisions() const);
itkLegacyMacro(void SetInternalNumberOfStreamDivisions(unsigned int));
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(OutputHasNumericTraitsCheck, (Concept::HasNumericTraits<OutputPixelValueType>));
// End concept checking
#endif
protected:
DiscreteGaussianImageFilter()
{
m_Variance.Fill(0.0);
m_MaximumError.Fill(0.01);
m_MaximumKernelWidth = 32;
m_UseImageSpacing = true;
m_FilterDimensionality = ImageDimension;
m_InputBoundaryCondition = &m_InputDefaultBoundaryCondition;
m_RealBoundaryCondition = &m_RealDefaultBoundaryCondition;
}
~DiscreteGaussianImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** DiscreteGaussianImageFilter needs a larger input requested region
* than the output requested region (larger by the size of the
* Gaussian kernel). As such, DiscreteGaussianImageFilter needs to
* provide an implementation for GenerateInputRequestedRegion() in
* order to inform the pipeline execution model.
* \sa ImageToImageFilter::GenerateInputRequestedRegion() */
void
GenerateInputRequestedRegion() override;
/** Standard pipeline method. While this class does not implement a
* ThreadedGenerateData(), its GenerateData() delegates all
* calculations to an NeighborhoodOperatorImageFilter. Since the
* NeighborhoodOperatorImageFilter is multithreaded, this filter is
* multithreaded by default. */
void
GenerateData() override;
/** Build a directional kernel to match user specifications */
void
GenerateKernel(const unsigned int dimension, KernelType & oper) const;
/** Get the variance, optionally adjusted for pixel spacing */
ArrayType
GetKernelVarianceArray() const;
private:
/** The variance of the gaussian blurring kernel in each dimensional
direction. */
ArrayType m_Variance{};
/** The maximum error of the gaussian blurring kernel in each dimensional
* direction. For definition of maximum error, see GaussianOperator.
* \sa GaussianOperator */
ArrayType m_MaximumError{};
/** Maximum allowed kernel width for any dimension of the discrete Gaussian
approximation */
unsigned int m_MaximumKernelWidth{};
/** Number of dimensions to process. Default is all dimensions */
unsigned int m_FilterDimensionality{};
/** Flag to indicate whether to use image spacing */
bool m_UseImageSpacing{};
/** Pointer to a persistent boundary condition object used
** for the image iterator. */
InputBoundaryConditionPointerType m_InputBoundaryCondition{};
/** Default boundary condition */
InputDefaultBoundaryConditionType m_InputDefaultBoundaryCondition{};
/** Boundary condition use for the intermediate filters */
RealBoundaryConditionPointerType m_RealBoundaryCondition{};
/** Default boundary condition use for the intermediate filters */
RealDefaultBoundaryConditionType m_RealDefaultBoundaryCondition{};
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkDiscreteGaussianImageFilter.hxx"
#endif
#endif
|