File: itkDiscreteGaussianImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (407 lines) | stat: -rw-r--r-- 13,830 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkDiscreteGaussianImageFilter_h
#define itkDiscreteGaussianImageFilter_h

#include "itkGaussianOperator.h"
#include "itkImageToImageFilter.h"
#include "itkImage.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"

namespace itk
{
/**
 * \class DiscreteGaussianImageFilter
 * \brief Blurs an image by separable convolution with discrete gaussian kernels.
 * This filter performs Gaussian blurring by separable convolution of an image
 * and a discrete Gaussian operator (kernel).
 *
 * The Gaussian operator used here was described by Tony Lindeberg (Discrete
 * Scale-Space Theory and the Scale-Space Primal Sketch.  Dissertation. Royal
 * Institute of Technology, Stockholm, Sweden. May 1991.) The Gaussian kernel
 * used here was designed so that smoothing and derivative operations commute
 * after discretization.
 *
 * The variance or standard deviation (sigma) will be evaluated as pixel units
 * if SetUseImageSpacing is off (false) or as physical units if
 * SetUseImageSpacing is on (true, default). The variance can be set
 * independently in each dimension.
 *
 * When the Gaussian kernel is small, this filter tends to run faster than
 * itk::RecursiveGaussianImageFilter.
 *
 * \sa GaussianOperator
 * \sa Image
 * \sa Neighborhood
 * \sa NeighborhoodOperator
 * \sa RecursiveGaussianImageFilter
 *
 * \ingroup ImageEnhancement
 * \ingroup ImageFeatureExtraction
 * \ingroup ITKSmoothing
 *
 * \sphinx
 * \sphinxexample{Filtering/Smoothing/SmoothWithRecursiveGaussian,Computes the smoothing with Gaussian kernel}
 * \endsphinx
 */

template <typename TInputImage, typename TOutputImage = TInputImage>
class ITK_TEMPLATE_EXPORT DiscreteGaussianImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(DiscreteGaussianImageFilter);

  /** Standard class type aliases. */
  using Self = DiscreteGaussianImageFilter;
  using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(DiscreteGaussianImageFilter);

  /** Image type information. */
  using InputImageType = TInputImage;
  using OutputImageType = TOutputImage;

  /** Extract some information from the image types.  Dimensionality
   * of the two images is assumed to be the same. */
  using OutputPixelType = typename TOutputImage::PixelType;
  using OutputInternalPixelType = typename TOutputImage::InternalPixelType;
  using InputPixelType = typename TInputImage::PixelType;
  using InputInternalPixelType = typename TInputImage::InternalPixelType;

  /** Pixel value type for Vector pixel types **/
  using InputPixelValueType = typename NumericTraits<InputPixelType>::ValueType;
  using OutputPixelValueType = typename NumericTraits<OutputPixelType>::ValueType;

  /** Extract some information from the image types.  Dimensionality
   * of the two images is assumed to be the same. */
  static constexpr unsigned int ImageDimension = TOutputImage::ImageDimension;

  /** Type of the pixel to use for intermediate results */
  using RealOutputPixelType = typename NumericTraits<OutputPixelType>::RealType;
  using RealOutputImageType = Image<OutputPixelType, ImageDimension>;
  using RealOutputPixelValueType = typename NumericTraits<RealOutputPixelType>::ValueType;

  /** Typedef to describe the boundary condition. */
  using BoundaryConditionType = ImageBoundaryCondition<TInputImage>;
  using InputBoundaryConditionPointerType = BoundaryConditionType *;
  using InputDefaultBoundaryConditionType = ZeroFluxNeumannBoundaryCondition<TInputImage>;
  using RealBoundaryConditionPointerType = ImageBoundaryCondition<RealOutputImageType> *;
  using RealDefaultBoundaryConditionType = ZeroFluxNeumannBoundaryCondition<RealOutputImageType>;

  /** Typedef of double containers */
  using ArrayType = FixedArray<double, Self::ImageDimension>;
  using SigmaArrayType = ArrayType;
  using ScalarRealType = double;

  /** Type of kernel to be used in blurring */
  using KernelType = GaussianOperator<RealOutputPixelValueType, ImageDimension>;
  using RadiusType = typename KernelType::RadiusType;

  /** The variance for the discrete Gaussian kernel.  Sets the variance
   * independently for each dimension, but
   * see also SetVariance(const double v). The default is 0.0 in each
   * dimension. If UseImageSpacing is true, the units are the physical units
   * of your image.  If UseImageSpacing is false then the units are
   * pixels. */
  itkSetMacro(Variance, ArrayType);
  itkGetConstMacro(Variance, const ArrayType);

  /** The algorithm will size the discrete kernel so that the error
   * resulting from truncation of the kernel is no greater than
   * MaximumError. The default is 0.01 in each dimension. */
  itkSetMacro(MaximumError, ArrayType);
  itkGetConstMacro(MaximumError, const ArrayType);

  /** Set the kernel to be no wider than MaximumKernelWidth pixels,
   *  even if MaximumError demands it. The default is 32 pixels. */
  itkGetConstMacro(MaximumKernelWidth, unsigned int);
  itkSetMacro(MaximumKernelWidth, unsigned int);

  /** Set the number of dimensions to smooth. Defaults to the image
   * dimension. Can be set to less than ImageDimension, smoothing all
   * the dimensions less than FilterDimensionality.  For instance, to
   * smooth the slices of a volume without smoothing in Z, set the
   * FilterDimensionality to 2. */
  itkGetConstMacro(FilterDimensionality, unsigned int);
  itkSetMacro(FilterDimensionality, unsigned int);

  /** Set/get the boundary condition. */
  itkSetMacro(InputBoundaryCondition, InputBoundaryConditionPointerType);
  itkGetConstMacro(InputBoundaryCondition, InputBoundaryConditionPointerType);
  itkSetMacro(RealBoundaryCondition, RealBoundaryConditionPointerType);
  itkGetConstMacro(RealBoundaryCondition, RealBoundaryConditionPointerType);

  /** Convenience Set methods for setting all dimensional parameters
   *  to the same values. */
  void
  SetVariance(const typename ArrayType::ValueType v)
  {
    m_Variance.Fill(v);
    this->Modified();
  }

  void
  SetMaximumError(const typename ArrayType::ValueType v)
  {
    m_MaximumError.Fill(v);
    this->Modified();
  }

  void
  SetVariance(const double * v)
  {
    ArrayType dv;

    for (unsigned int i = 0; i < ImageDimension; ++i)
    {
      dv[i] = v[i];
    }
    this->SetVariance(dv);
  }

  void
  SetVariance(const float * v)
  {
    ArrayType dv;

    for (unsigned int i = 0; i < ImageDimension; ++i)
    {
      dv[i] = v[i];
    }
    this->SetVariance(dv);
  }

  /** Set the standard deviation of the Gaussian used for smoothing.
   * Sigma is measured in the units of image spacing. */
  void
  SetSigma(const ArrayType & sigma)
  {
    ArrayType variance;
    for (unsigned int i = 0; i < ImageDimension; ++i)
    {
      variance[i] = sigma[i] * sigma[i];
    }
    this->SetVariance(variance);
  }
  /** SetSigmaArray is preserved for interface
   *  backwards compatibility. */
  void
  SetSigmaArray(const ArrayType & sigmas)
  {
    this->SetSigma(sigmas);
  }
  void
  SetSigma(double sigma)
  {
    this->SetVariance(sigma * sigma);
  }

  /** Get the Sigma value. */
  ArrayType
  GetSigmaArray() const
  {
    ArrayType sigmas;
    for (unsigned int i = 0; i < ImageDimension; ++i)
    {
      sigmas[i] = std::sqrt(m_Variance[i]);
    }
    return sigmas;
  }

  /** Get the Sigma scalar. If the Sigma is anisotropic, we will just
   * return the Sigma along the first dimension. */
  double
  GetSigma() const
  {
    return std::sqrt(m_Variance[0]);
  }

  void
  SetMaximumError(const double * v)
  {
    ArrayType dv;

    for (unsigned int i = 0; i < ImageDimension; ++i)
    {
      dv[i] = v[i];
    }
    this->SetMaximumError(dv);
  }

  void
  SetMaximumError(const float * v)
  {
    ArrayType dv;

    for (unsigned int i = 0; i < ImageDimension; ++i)
    {
      dv[i] = v[i];
    }
    this->SetMaximumError(dv);
  }

  /** Get the radius of the generated directional kernel */
  unsigned int
  GetKernelRadius(const unsigned int dimension) const;

  /** Get the radius of the separable kernel in each direction */
  ArrayType
  GetKernelRadius() const;

  /** Get the size of the separable kernel in each direction.
   *  size[i] = radius[i] * 2 + 1 */
  ArrayType
  GetKernelSize() const;

  /** Set/Get whether or not the filter will use the spacing of the input
   * image in its calculations. Use On to take the image spacing information
   * into account and to specify the Gaussian variance in real world units;
   * use Off to ignore the image spacing and to specify the Gaussian variance
   * in voxel units. Default is On. */
  itkSetMacro(UseImageSpacing, bool);
  itkGetConstMacro(UseImageSpacing, bool);
  itkBooleanMacro(UseImageSpacing);

#if !defined(ITK_FUTURE_LEGACY_REMOVE)
  /** Use the image spacing information in calculations. Use this option if you
   *  want to specify Gaussian variance in real world units.  Default is
   *  ImageSpacingOn.
   *  \deprecated Use DiscreteGaussianImageFilter::UseImageSpacingOn instead. */
  void
  SetUseImageSpacingOn()
  {
    this->SetUseImageSpacing(true);
  }

  /** Ignore the image spacing. Use this option if you want to specify Gaussian
      variance in pixels.  Default is ImageSpacingOn.
      \deprecated Use DiscreteGaussianImageFilter::UseImageSpacingOff instead. */
  void
  SetUseImageSpacingOff()
  {
    this->SetUseImageSpacing(false);
  }
#endif

  /** \brief Set/Get number of pieces to divide the input for the
   * internal composite pipeline. The upstream pipeline will not be
   * effected.
   *
   * The default value is $ImageDimension^2$.
   *
   * This parameter was introduced to reduce the memory used by images
   * internally, at the cost of performance.
   */
  itkLegacyMacro(unsigned int GetInternalNumberOfStreamDivisions() const);
  itkLegacyMacro(void SetInternalNumberOfStreamDivisions(unsigned int));

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking

  itkConceptMacro(OutputHasNumericTraitsCheck, (Concept::HasNumericTraits<OutputPixelValueType>));

  // End concept checking
#endif

protected:
  DiscreteGaussianImageFilter()
  {
    m_Variance.Fill(0.0);
    m_MaximumError.Fill(0.01);
    m_MaximumKernelWidth = 32;
    m_UseImageSpacing = true;
    m_FilterDimensionality = ImageDimension;
    m_InputBoundaryCondition = &m_InputDefaultBoundaryCondition;
    m_RealBoundaryCondition = &m_RealDefaultBoundaryCondition;
  }

  ~DiscreteGaussianImageFilter() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** DiscreteGaussianImageFilter needs a larger input requested region
   * than the output requested region (larger by the size of the
   * Gaussian kernel).  As such, DiscreteGaussianImageFilter needs to
   * provide an implementation for GenerateInputRequestedRegion() in
   * order to inform the pipeline execution model.
   * \sa ImageToImageFilter::GenerateInputRequestedRegion() */
  void
  GenerateInputRequestedRegion() override;

  /** Standard pipeline method. While this class does not implement a
   * ThreadedGenerateData(), its GenerateData() delegates all
   * calculations to an NeighborhoodOperatorImageFilter.  Since the
   * NeighborhoodOperatorImageFilter is multithreaded, this filter is
   * multithreaded by default. */
  void
  GenerateData() override;

  /** Build a directional kernel to match user specifications */
  void
  GenerateKernel(const unsigned int dimension, KernelType & oper) const;

  /** Get the variance, optionally adjusted for pixel spacing */
  ArrayType
  GetKernelVarianceArray() const;

private:
  /** The variance of the gaussian blurring kernel in each dimensional
    direction. */
  ArrayType m_Variance{};

  /** The maximum error of the gaussian blurring kernel in each dimensional
   * direction. For definition of maximum error, see GaussianOperator.
   * \sa GaussianOperator */
  ArrayType m_MaximumError{};

  /** Maximum allowed kernel width for any dimension of the discrete Gaussian
      approximation */
  unsigned int m_MaximumKernelWidth{};

  /** Number of dimensions to process. Default is all dimensions */
  unsigned int m_FilterDimensionality{};

  /** Flag to indicate whether to use image spacing */
  bool m_UseImageSpacing{};

  /** Pointer to a persistent boundary condition object used
   ** for the image iterator. */
  InputBoundaryConditionPointerType m_InputBoundaryCondition{};

  /** Default boundary condition */
  InputDefaultBoundaryConditionType m_InputDefaultBoundaryCondition{};

  /** Boundary condition use for the intermediate filters */
  RealBoundaryConditionPointerType m_RealBoundaryCondition{};

  /** Default boundary condition use for the intermediate filters */
  RealDefaultBoundaryConditionType m_RealDefaultBoundaryCondition{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkDiscreteGaussianImageFilter.hxx"
#endif

#endif