File: itkDiscreteGaussianImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (353 lines) | stat: -rw-r--r-- 12,012 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkDiscreteGaussianImageFilter_hxx
#define itkDiscreteGaussianImageFilter_hxx

#include "itkNeighborhoodOperatorImageFilter.h"
#include "itkGaussianOperator.h"
#include "itkImageRegionIterator.h"
#include "itkProgressAccumulator.h"
#include "itkImageAlgorithm.h"

namespace itk
{
template <typename TInputImage, typename TOutputImage>
void
DiscreteGaussianImageFilter<TInputImage, TOutputImage>::GenerateKernel(const unsigned int dimension,
                                                                       KernelType &       oper) const
{
  // Determine the size of the operator in this dimension.  Note that the
  // Gaussian is built as a 1D operator in each of the specified directions.
  oper.SetDirection(dimension);
  oper.SetMaximumError(m_MaximumError[dimension]);
  oper.SetMaximumKernelWidth(m_MaximumKernelWidth);

  oper.SetVariance(this->GetKernelVarianceArray()[dimension]);

  oper.CreateDirectional();
}

template <typename TInputImage, typename TOutputImage>
unsigned int
DiscreteGaussianImageFilter<TInputImage, TOutputImage>::GetKernelRadius(const unsigned int dimension) const
{
  KernelType oper;
  this->GenerateKernel(dimension, oper);
  return oper.GetRadius(dimension);
}

template <typename TInputImage, typename TOutputImage>
auto
DiscreteGaussianImageFilter<TInputImage, TOutputImage>::GetKernelRadius() const -> ArrayType
{
  ArrayType kernelRadius;
  for (unsigned int dim = 0; dim < ImageDimension; ++dim)
  {
    kernelRadius[dim] = this->GetKernelRadius(dim);
  }
  return kernelRadius;
}


template <typename TInputImage, typename TOutputImage>
auto
DiscreteGaussianImageFilter<TInputImage, TOutputImage>::GetKernelSize() const -> ArrayType
{
  ArrayType kernelSize;
  for (unsigned int dim = 0; dim < ImageDimension; ++dim)
  {
    kernelSize[dim] = this->GetKernelRadius(dim) * 2 + 1;
  }
  return kernelSize;
}

template <typename TInputImage, typename TOutputImage>
auto
DiscreteGaussianImageFilter<TInputImage, TOutputImage>::GetKernelVarianceArray() const -> ArrayType
{
  if (m_UseImageSpacing)
  {
    if (this->GetInput() == nullptr)
    {
      itkExceptionMacro("Could not get kernel variance! UseImageSpacing is ON but no input image was provided");
    }

    const auto & spacing = this->GetInput()->GetSpacing();

    ArrayType adjustedVariance;
    // Adjusted variance = var / (spacing ^ 2)
    for (unsigned int dim = 0; dim < ImageDimension; ++dim)
    {
      // convert the variance from physical units to pixels
      double s = spacing[dim];
      s = s * s;
      adjustedVariance[dim] = m_Variance[dim] / s;
    }
    return adjustedVariance;
  }
  else
  {
    return this->GetVariance();
  }
}

template <typename TInputImage, typename TOutputImage>
void
DiscreteGaussianImageFilter<TInputImage, TOutputImage>::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method. this should
  // copy the output requested region to the input requested region
  Superclass::GenerateInputRequestedRegion();

  // get pointers to the input and output
  typename Superclass::InputImagePointer inputPtr = const_cast<TInputImage *>(this->GetInput());

  if (!inputPtr)
  {
    return;
  }

  // Determine the kernel size in each direction
  RadiusType radius;
  for (unsigned int i = 0; i < TInputImage::ImageDimension; ++i)
  {
    if (i < m_FilterDimensionality)
    {
      radius[i] = GetKernelRadius(i);
    }
    else
    {
      radius[i] = 0;
    }
  }

  // get a copy of the input requested region (should equal the output
  // requested region)
  typename TInputImage::RegionType inputRequestedRegion;
  inputRequestedRegion = inputPtr->GetRequestedRegion();

  // pad the input requested region by the operator radius
  inputRequestedRegion.PadByRadius(radius);

  // crop the input requested region at the input's largest possible region
  inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion());

  inputPtr->SetRequestedRegion(inputRequestedRegion);
}

template <typename TInputImage, typename TOutputImage>
void
DiscreteGaussianImageFilter<TInputImage, TOutputImage>::GenerateData()
{
  TOutputImage * output = this->GetOutput();

  output->SetBufferedRegion(output->GetRequestedRegion());
  output->Allocate();

  // Create an internal image to protect the input image's metadata
  // (e.g. RequestedRegion). The StreamingImageFilter changes the
  // requested region as part of its normal processing.
  auto localInput = TInputImage::New();
  localInput->Graft(this->GetInput());

  // Determine the dimensionality to filter
  unsigned int filterDimensionality = m_FilterDimensionality;
  if (filterDimensionality > ImageDimension)
  {
    filterDimensionality = ImageDimension;
  }
  if (filterDimensionality == 0)
  {
    // no smoothing, copy input to output
    ImageAlgorithm::Copy(localInput.GetPointer(),
                         output,
                         this->GetOutput()->GetRequestedRegion(),
                         this->GetOutput()->GetRequestedRegion());
    return;
  }

  // Type definition for the internal neighborhood filter
  //
  // First filter convolves and changes type from input type to real type
  // Middle filters convolves from real to real
  // Last filter convolves and changes type from real type to output type
  // Streaming filter forces the mini-pipeline to run in chunks

  using FirstFilterType =
    NeighborhoodOperatorImageFilter<InputImageType, RealOutputImageType, RealOutputPixelValueType>;
  using IntermediateFilterType =
    NeighborhoodOperatorImageFilter<RealOutputImageType, RealOutputImageType, RealOutputPixelValueType>;
  using LastFilterType =
    NeighborhoodOperatorImageFilter<RealOutputImageType, OutputImageType, RealOutputPixelValueType>;
  using SingleFilterType = NeighborhoodOperatorImageFilter<InputImageType, OutputImageType, RealOutputPixelValueType>;

  using FirstFilterPointer = typename FirstFilterType::Pointer;
  using IntermediateFilterPointer = typename IntermediateFilterType::Pointer;
  using LastFilterPointer = typename LastFilterType::Pointer;
  using SingleFilterPointer = typename SingleFilterType::Pointer;

  // Create a series of operators

  std::vector<KernelType> oper;
  oper.resize(filterDimensionality);

  // Create a process accumulator for tracking the progress of minipipeline
  auto progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter(this);

  // Set up the operators
  unsigned int i;
  for (i = 0; i < filterDimensionality; ++i)
  {
    // we reverse the direction to minimize computation while, because
    // the largest dimension will be split slice wise for streaming
    unsigned int reverse_i = filterDimensionality - i - 1;

    this->GenerateKernel(i, oper[reverse_i]);
  }

  // Create a chain of filters
  //
  //

  if (filterDimensionality == 1)
  {
    // Use just a single filter
    SingleFilterPointer singleFilter = SingleFilterType::New();
    singleFilter->SetOperator(oper[0]);
    singleFilter->SetInput(localInput);
    singleFilter->OverrideBoundaryCondition(m_InputBoundaryCondition);
    progress->RegisterInternalFilter(singleFilter, 1.0f / m_FilterDimensionality);

    // Graft this filters output onto the mini-pipeline so the mini-pipeline
    // has the correct region ivars and will write to this filters bulk data
    // output.
    singleFilter->GraftOutput(output);

    // Update the filter
    singleFilter->Update();

    // Graft the last output of the mini-pipeline onto this filters output so
    // the final output has the correct region ivars and a handle to the final
    // bulk data
    this->GraftOutput(output);
  }
  else
  {
    // Setup a full mini-pipeline and stream the data through the
    // pipeline.
    const unsigned int numberOfStages = filterDimensionality;

    // First filter convolves and changes type from input type to real type
    FirstFilterPointer firstFilter = FirstFilterType::New();
    firstFilter->SetOperator(oper[0]);
    firstFilter->ReleaseDataFlagOn();
    firstFilter->SetInput(localInput);
    firstFilter->OverrideBoundaryCondition(m_InputBoundaryCondition);
    progress->RegisterInternalFilter(firstFilter, 1.0f / numberOfStages);

    // Middle filters convolves from real to real
    std::vector<IntermediateFilterPointer> intermediateFilters;
    if (filterDimensionality > 2)
    {
      for (i = 1; i < filterDimensionality - 1; ++i)
      {
        IntermediateFilterPointer f = IntermediateFilterType::New();
        f->SetOperator(oper[i]);
        f->ReleaseDataFlagOn();

        f->OverrideBoundaryCondition(m_RealBoundaryCondition);
        progress->RegisterInternalFilter(f, 1.0f / numberOfStages);

        if (i == 1)
        {
          f->SetInput(firstFilter->GetOutput());
        }
        else
        {
          // note: first filter in vector (zeroth element) is for i==1
          f->SetInput(intermediateFilters[i - 2]->GetOutput());
        }

        intermediateFilters.push_back(f);
      }
    }

    // Last filter convolves and changes type from real type to output type
    LastFilterPointer lastFilter = LastFilterType::New();
    lastFilter->SetOperator(oper[filterDimensionality - 1]);
    lastFilter->OverrideBoundaryCondition(m_RealBoundaryCondition);
    if (filterDimensionality > 2)
    {
      lastFilter->SetInput(intermediateFilters[filterDimensionality - 3]->GetOutput());
    }
    else
    {
      lastFilter->SetInput(firstFilter->GetOutput());
    }
    progress->RegisterInternalFilter(lastFilter, 1.0f / numberOfStages);

    // Graft this filters output onto the mini-pipeline so the mini-pipeline
    // has the correct region ivars and will write to this filters bulk data
    // output.
    lastFilter->GraftOutput(output);

    // Update the last filter in the chain
    lastFilter->Update();

    // Graft the last output of the mini-pipeline onto this filters output so
    // the final output has the correct region ivars and a handle to the final
    // bulk data
    this->GraftOutput(output);
  }
}

#if !defined(ITK_LEGACY_REMOVE)
template <typename TInputImage, typename TOutputImage>
unsigned int
DiscreteGaussianImageFilter<TInputImage, TOutputImage>::GetInternalNumberOfStreamDivisions() const
{
  return 1;
}

template <typename TInputImage, typename TOutputImage>
void
DiscreteGaussianImageFilter<TInputImage, TOutputImage>::SetInternalNumberOfStreamDivisions(unsigned int)
{
#  if !defined(ITK_LEGACY_SILENT)
  itkWarningMacro("SetInternalNumberOfStreamDivisions has been removed as the filter no longer internally streams!");
#  endif
}
#endif

template <typename TInputImage, typename TOutputImage>
void
DiscreteGaussianImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Variance: " << m_Variance << std::endl;
  os << indent << "MaximumError: " << m_MaximumError << std::endl;
  os << indent << "MaximumKernelWidth: " << m_MaximumKernelWidth << std::endl;
  os << indent << "FilterDimensionality: " << m_FilterDimensionality << std::endl;
  os << indent << "UseImageSpacing: " << (m_UseImageSpacing ? "On" : "Off") << std::endl;
  os << indent << "RealBoundaryCondition: " << m_RealBoundaryCondition << std::endl;
}
} // end namespace itk

#endif