File: itkMeanImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (156 lines) | stat: -rw-r--r-- 5,997 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkMeanImageFilter_hxx
#define itkMeanImageFilter_hxx

#include "itkBufferedImageNeighborhoodPixelAccessPolicy.h"
#include "itkImageNeighborhoodOffsets.h"
#include "itkImageRegionRange.h"
#include "itkIndexRange.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkOffset.h"
#include "itkShapedImageNeighborhoodRange.h"
#include "itkDefaultConvertPixelTraits.h"

namespace itk
{
template <typename TInputImage, typename TOutputImage>
MeanImageFilter<TInputImage, TOutputImage>::MeanImageFilter()
{
  this->DynamicMultiThreadingOn();
}

template <typename TInputImage, typename TOutputImage>
void
MeanImageFilter<TInputImage, TOutputImage>::DynamicThreadedGenerateData(
  const OutputImageRegionType & outputRegionForThread)
{
  typename OutputImageType::Pointer     output = this->GetOutput();
  typename InputImageType::ConstPointer input = this->GetInput();

  const auto radius = this->GetRadius();

  // Find the data-set boundary "faces" and the center non-boundary subregion.
  const auto calculatorResult =
    NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<InputImageType>::Compute(*input, outputRegionForThread, radius);

  const auto neighborhoodOffsets = GenerateRectangularImageNeighborhoodOffsets<InputImageDimension>(radius);

  // Process the non-boundary subregion, using a faster pixel access policy without boundary extrapolation.
  GenerateDataInSubregion<BufferedImageNeighborhoodPixelAccessPolicy<InputImageType>>(
    *input,
    *output,
    calculatorResult.GetNonBoundaryRegion(),
    neighborhoodOffsets,
    static_cast<InputPixelType *>(nullptr));

  // Process each of the boundary faces. These are N-d regions which border
  // the edge of the buffer.
  for (const auto & boundaryFace : calculatorResult.GetBoundaryFaces())
  {
    GenerateDataInSubregion<ZeroFluxNeumannImageNeighborhoodPixelAccessPolicy<InputImageType>>(
      *input, *output, boundaryFace, neighborhoodOffsets, static_cast<InputPixelType *>(nullptr));
  }
}


template <typename TInputImage, typename TOutputImage>
template <typename TPixelAccessPolicy, typename TPixelType>
void
MeanImageFilter<TInputImage, TOutputImage>::GenerateDataInSubregion(
  const TInputImage &                              inputImage,
  TOutputImage &                                   outputImage,
  const ImageRegion<InputImageDimension> &         imageRegion,
  const std::vector<Offset<InputImageDimension>> & neighborhoodOffsets,
  const TPixelType *)
{
  const auto neighborhoodSize = static_cast<double>(neighborhoodOffsets.size());

  auto neighborhoodRange = ShapedImageNeighborhoodRange<const InputImageType, TPixelAccessPolicy>(
    inputImage, Index<InputImageDimension>(), neighborhoodOffsets);
  auto outputIterator = ImageRegionRange<OutputImageType>(outputImage, imageRegion).begin();

  for (const auto & index : ImageRegionIndexRange<InputImageDimension>(imageRegion))
  {
    neighborhoodRange.SetLocation(index);

    auto sum = InputRealType{};

    for (const InputPixelType pixelValue : neighborhoodRange)
    {
      sum += static_cast<InputRealType>(pixelValue);
    }

    // get the mean value
    *outputIterator = static_cast<typename OutputImageType::PixelType>(sum / neighborhoodSize);
    ++outputIterator;
  }
}

template <typename TInputImage, typename TOutputImage>
template <typename TPixelAccessPolicy, typename TValueType>
void
MeanImageFilter<TInputImage, TOutputImage>::GenerateDataInSubregion(
  const TInputImage &                              inputImage,
  TOutputImage &                                   outputImage,
  const ImageRegion<InputImageDimension> &         imageRegion,
  const std::vector<Offset<InputImageDimension>> & neighborhoodOffsets,
  const VariableLengthVector<TValueType> *)
{
  const auto neighborhoodSize = static_cast<double>(neighborhoodOffsets.size());

  auto neighborhoodRange = ShapedImageNeighborhoodRange<const InputImageType, TPixelAccessPolicy>(
    inputImage, Index<InputImageDimension>(), neighborhoodOffsets);
  auto outputIterator = ImageRegionRange<OutputImageType>(outputImage, imageRegion).begin();

  // These temp variable are needed outside the loop for
  // VariableLengthVectors to avoid memory allocations on a per-pixel
  // basis.
  InputRealType   sum(inputImage.GetNumberOfComponentsPerPixel());
  OutputPixelType out(inputImage.GetNumberOfComponentsPerPixel());

  for (const auto & index : ImageRegionIndexRange<InputImageDimension>(imageRegion))
  {
    neighborhoodRange.SetLocation(index);

    using PixelComponentType = typename NumericTraits<InputRealType>::ValueType;
    sum.Fill(NumericTraits<PixelComponentType>::Zero);

    for (const InputPixelType pixelValue : neighborhoodRange)
    {
      sum += pixelValue;
    }

    sum /= neighborhoodSize;

    // The following line is an implicit conversion from the
    // InputRealType to the output pixel. If an explicit construction
    // or static_cast was used a new VariableLengthVector temporary would be
    // constructed requiring the array to be dynamic allocated. This
    // implicit assignment reuses the array allocated in the variable out.
    // *DO NOT USE static_cast*
    out = sum;
    *outputIterator = out;
    ++outputIterator;
  }
}


} // end namespace itk

#endif