File: itkSmoothingRecursiveGaussianImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (186 lines) | stat: -rw-r--r-- 6,603 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#ifndef itkSmoothingRecursiveGaussianImageFilter_h
#define itkSmoothingRecursiveGaussianImageFilter_h

#include "itkRecursiveGaussianImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkImage.h"
#include "itkPixelTraits.h"
#include "itkCommand.h"

namespace itk
{

/**
 * \class SmoothingRecursiveGaussianImageFilter
 * \brief Computes the smoothing of an image by convolution with the Gaussian kernels implemented as IIR filters.
 *
 * This filter is implemented using the recursive gaussian
 * filters. For multi-component images, the filter works on each
 * component independently.
 *
 * For this filter to be able to run in-place the input and output
 * image types need to be the same and/or the same type as the
 * RealImageType.
 *
 * \ingroup IntensityImageFilters
 * \ingroup SingleThreaded
 * \ingroup ITKSmoothing
 *
 */

template <typename TInputImage, typename TOutputImage = TInputImage>
class ITK_TEMPLATE_EXPORT SmoothingRecursiveGaussianImageFilter : public InPlaceImageFilter<TInputImage, TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(SmoothingRecursiveGaussianImageFilter);

  /** Standard class type aliases. */
  using Self = SmoothingRecursiveGaussianImageFilter;
  using Superclass = InPlaceImageFilter<TInputImage, TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Pixel type alias. */
  using InputImageType = TInputImage;
  using OutputImageType = TOutputImage;
  using PixelType = typename TInputImage::PixelType;
  using RealType = typename NumericTraits<PixelType>::RealType;
  using ScalarRealType = typename NumericTraits<PixelType>::ScalarRealType;

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(SmoothingRecursiveGaussianImageFilter);

  /** Image dimension. */
  static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;

  /** Define the type for the sigma array. */
  using SigmaArrayType = FixedArray<ScalarRealType, Self::ImageDimension>;

  /** Define the image type for internal computations.
   * RealType is usually 'double' in NumericTraits.
   * Here we prefer float in order to save memory. */
  using InternalRealType = typename NumericTraits<PixelType>::FloatType;
  using RealImageType = typename InputImageType::template Rebind<InternalRealType>::Type;

  /** Typedef for the first Gaussian smoothing in the pipeline. */
  using FirstGaussianFilterType = RecursiveGaussianImageFilter<InputImageType, RealImageType>;

  /** Typedef for the internal Gaussian smoothing filter. */
  using InternalGaussianFilterType = RecursiveGaussianImageFilter<RealImageType, RealImageType>;

  /** Typedef for the casting image filter. */
  using CastingFilterType = CastImageFilter<RealImageType, OutputImageType>;

  /** Pointer to the internal Gaussian filter. */
  using InternalGaussianFilterPointer = typename InternalGaussianFilterType::Pointer;

  /** Pointer to the first Gaussian smoothing filter. */
  using FirstGaussianFilterPointer = typename FirstGaussianFilterType::Pointer;

  /** Pointer to the casting image filter. */
  using CastingFilterPointer = typename CastingFilterType::Pointer;

  /** Pointer to the Output Image */
  using OutputImagePointer = typename OutputImageType::Pointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Set the standard deviation of the Gaussian used for smoothing.
   * Sigma is measured in the units of image spacing. You may use the method
   * SetSigma to set the same value across each axis or use the method
   * SetSigmaArray if you need different values along each axis. */
  void
  SetSigmaArray(const SigmaArrayType & sigma);
  void
  SetSigma(ScalarRealType sigma);

  /** Get the Sigma value. */
  SigmaArrayType
  GetSigmaArray() const;

  /** Get the Sigma scalar. If the Sigma is anisotropic, we will just
   * return the Sigma along the first dimension. */
  ScalarRealType
  GetSigma() const;

  /** Set/Get the flag for normalizing the Gaussian over scale-space.
   * This method does not effect the output of this filter.
   *
   * \sa RecursiveGaussianImageFilter::SetNormalizeAcrossScale */
  void
  SetNormalizeAcrossScale(bool normalize);
  itkGetConstMacro(NormalizeAcrossScale, bool);
  itkBooleanMacro(NormalizeAcrossScale);

  /** Set the number of work units to create. */
  void
  SetNumberOfWorkUnits(ThreadIdType nb) override;

  bool
  CanRunInPlace() const override;

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  // This concept does not work with variable length vector images
  // itkConceptMacro( InputHasNumericTraitsCheck,
  //( Concept::HasNumericTraits< PixelType > ) );
  // End concept checking
#endif

protected:
  SmoothingRecursiveGaussianImageFilter();
  ~SmoothingRecursiveGaussianImageFilter() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  void
  GenerateData() override;

  /** SmoothingRecursiveGaussianImageFilter needs all of the input to produce an
   * output. Therefore, SmoothingRecursiveGaussianImageFilter needs to provide
   * an implementation for GenerateInputRequestedRegion in order to inform
   * the pipeline execution model.
   *
   * \sa ImageToImageFilter::GenerateInputRequestedRegion() */
  void
  GenerateInputRequestedRegion() override;

  // Override since the filter produces the entire dataset
  void
  EnlargeOutputRequestedRegion(DataObject * output) override;

private:
  InternalGaussianFilterPointer m_SmoothingFilters[ImageDimension - 1]{};
  FirstGaussianFilterPointer    m_FirstSmoothingFilter{};
  CastingFilterPointer          m_CastingFilter{};

  bool m_NormalizeAcrossScale{ false };

  SigmaArrayType m_Sigma{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkSmoothingRecursiveGaussianImageFilter.hxx"
#endif

#endif