File: itkSmoothingRecursiveGaussianImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (285 lines) | stat: -rw-r--r-- 9,754 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkSmoothingRecursiveGaussianImageFilter_hxx
#define itkSmoothingRecursiveGaussianImageFilter_hxx

#include "itkImageRegionIteratorWithIndex.h"
#include "itkProgressAccumulator.h"

namespace itk
{

template <typename TInputImage, typename TOutputImage>
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::SmoothingRecursiveGaussianImageFilter()

{
  // NB: The first filter is the last dimension because it does not
  // always run in-place. As this dimension provides the least amount
  // of cache coherency, it will provide the least  amount of performance
  // gains from running in-place. In fact, some performance tests
  // indicate that the running in-place in the 3rd dimension the
  // performance actually declines compared to not in-place methods.
  m_FirstSmoothingFilter = FirstGaussianFilterType::New();
  m_FirstSmoothingFilter->SetOrder(GaussianOrderEnum::ZeroOrder);
  m_FirstSmoothingFilter->SetDirection(ImageDimension - 1);
  m_FirstSmoothingFilter->SetNormalizeAcrossScale(m_NormalizeAcrossScale);
  m_FirstSmoothingFilter->ReleaseDataFlagOn();
  // InPlace will be set conditionally in the GenerateData method.

  for (unsigned int i = 0; i < ImageDimension - 1; ++i)
  {
    m_SmoothingFilters[i] = InternalGaussianFilterType::New();
    m_SmoothingFilters[i]->SetOrder(GaussianOrderEnum::ZeroOrder);
    m_SmoothingFilters[i]->SetNormalizeAcrossScale(m_NormalizeAcrossScale);
    m_SmoothingFilters[i]->SetDirection(i);
    m_SmoothingFilters[i]->ReleaseDataFlagOn();
    m_SmoothingFilters[i]->InPlaceOn();
  }

  m_SmoothingFilters[0]->SetInput(m_FirstSmoothingFilter->GetOutput());
  for (unsigned int i = 1; i < ImageDimension - 1; ++i)
  {
    m_SmoothingFilters[i]->SetInput(m_SmoothingFilters[i - 1]->GetOutput());
  }

  m_CastingFilter = CastingFilterType::New();
  m_CastingFilter->SetInput(m_SmoothingFilters[ImageDimension - 2]->GetOutput());
  m_CastingFilter->InPlaceOn();

  this->InPlaceOff();

  // NB: We must call SetSigma in order to initialize the smoothing
  // filters with the default scale.  However, m_Sigma must first be
  // initialized (it is used inside SetSigma), and it must be different
  // from 1.0 or the call will be ignored.
  this->m_Sigma.Fill(0.0);
  this->SetSigma(1.0);
}


template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::SetNumberOfWorkUnits(ThreadIdType nb)
{
  Superclass::SetNumberOfWorkUnits(nb);
  for (unsigned int i = 0; i < ImageDimension - 1; ++i)
  {
    m_SmoothingFilters[i]->SetNumberOfWorkUnits(nb);
  }
  m_FirstSmoothingFilter->SetNumberOfWorkUnits(nb);
}


template <typename TInputImage, typename TOutputImage>
bool
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::CanRunInPlace() const
{
  // Note: There are two different ways this filter may try to run
  // in-place:
  // 1) Similar to the standard way, when the input and output image
  // are of the same type, they can share the bulk data. The output
  // will be grafted onto the last filter. In this fashion the input
  // and output will be the same bulk data, but the intermediate
  // mini-pipeline will use different data.
  // 2) If the input image is the same type as the RealImage used for
  // the mini-pipeline, then all the filters may re-use the same
  // bulk data, stealing it from the input then moving it down the
  // pipeline filter by filter. Additionally, if the output is also
  // RealType then the last filter will run in-place making the entire
  // pipeline in-place and only utilizing on copy of the bulk data.

  return m_FirstSmoothingFilter->CanRunInPlace() || this->Superclass::CanRunInPlace();
}


template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::SetSigma(ScalarRealType sigma)
{
  SigmaArrayType sigmas(sigma);

  this->SetSigmaArray(sigmas);
}


template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::SetSigmaArray(const SigmaArrayType & sigma)
{
  if (this->m_Sigma != sigma)
  {
    this->m_Sigma = sigma;
    for (unsigned int i = 0; i < ImageDimension - 1; ++i)
    {
      m_SmoothingFilters[i]->SetSigma(m_Sigma[i]);
    }
    m_FirstSmoothingFilter->SetSigma(m_Sigma[ImageDimension - 1]);

    this->Modified();
  }
}


template <typename TInputImage, typename TOutputImage>
auto
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::GetSigmaArray() const -> SigmaArrayType
{
  return m_Sigma;
}


template <typename TInputImage, typename TOutputImage>
auto
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::GetSigma() const -> ScalarRealType
{
  return m_Sigma[0];
}


template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::SetNormalizeAcrossScale(bool normalize)
{
  m_NormalizeAcrossScale = normalize;

  for (unsigned int i = 0; i < ImageDimension - 1; ++i)
  {
    m_SmoothingFilters[i]->SetNormalizeAcrossScale(normalize);
  }
  m_FirstSmoothingFilter->SetNormalizeAcrossScale(normalize);

  this->Modified();
}

template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::GenerateInputRequestedRegion()
{
  // Call the superclass' implementation of this method. This should
  // copy the output requested region to the input requested region.
  Superclass::GenerateInputRequestedRegion();

  // This filter needs all of the input
  typename SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::InputImagePointer image =
    const_cast<InputImageType *>(this->GetInput());
  if (image)
  {
    image->SetRequestedRegion(this->GetInput()->GetLargestPossibleRegion());
  }
}

template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::EnlargeOutputRequestedRegion(DataObject * output)
{
  auto * out = dynamic_cast<TOutputImage *>(output);

  if (out)
  {
    out->SetRequestedRegion(out->GetLargestPossibleRegion());
  }
}


template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::GenerateData()
{
  itkDebugMacro("SmoothingRecursiveGaussianImageFilter generating data ");

  const typename TInputImage::ConstPointer inputImage(this->GetInput());

  const typename TInputImage::RegionType region = inputImage->GetRequestedRegion();
  const typename TInputImage::SizeType   size = region.GetSize();

  for (unsigned int d = 0; d < ImageDimension; ++d)
  {
    if (size[d] < 4)
    {
      itkExceptionMacro(
        "The number of pixels along dimension "
        << d << " is less than 4. This filter requires a minimum of four pixels along the dimension to be processed.");
    }
  }

  // If this filter is running in-place, then set the first smoothing
  // filter to steal the bulk data, by running in-place.
  if (this->CanRunInPlace() && this->GetInPlace())
  {
    m_FirstSmoothingFilter->InPlaceOn();

    // To make this filter's input and out share the same data, call
    // the InPlace's/Superclass's allocate methods, which takes care
    // of the needed bulk data sharing.
    this->AllocateOutputs();
  }
  else
  {
    m_FirstSmoothingFilter->InPlaceOff();
  }

  // If the last filter is running in-place then this bulk data is not
  // needed, release it to save memory.
  if (m_CastingFilter->CanRunInPlace())
  {
    this->GetOutput()->ReleaseData();
  }

  // Create a process accumulator for tracking the progress of this minipipeline.
  auto progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter(this);

  // Register the filter with the with progress accumulator using
  // equal weight proportion.
  for (unsigned int i = 0; i < ImageDimension - 1; ++i)
  {
    progress->RegisterInternalFilter(m_SmoothingFilters[i], 1.0 / (ImageDimension));
  }

  progress->RegisterInternalFilter(m_FirstSmoothingFilter, 1.0 / (ImageDimension));
  m_FirstSmoothingFilter->SetInput(inputImage);

  // Graft our output to the internal filter to force the proper regions
  // to be generated, and the bulk data which be be from the input due
  // to the in-place option.
  m_CastingFilter->GraftOutput(this->GetOutput());
  m_CastingFilter->Update();
  this->GraftOutput(m_CastingFilter->GetOutput());
}


template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  for (unsigned int i = 0; i < ImageDimension - 1; ++i)
  {
    itkPrintSelfObjectMacro(SmoothingFilters[i]);
  }
  itkPrintSelfObjectMacro(FirstSmoothingFilter);
  itkPrintSelfObjectMacro(CastingFilter);

  os << indent << "NormalizeAcrossScale: " << m_NormalizeAcrossScale << std::endl;
  os << indent << "Sigma: " << m_Sigma << std::endl;
}

} // end namespace itk

#endif