1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkSmoothingRecursiveGaussianImageFilter_hxx
#define itkSmoothingRecursiveGaussianImageFilter_hxx
#include "itkImageRegionIteratorWithIndex.h"
#include "itkProgressAccumulator.h"
namespace itk
{
template <typename TInputImage, typename TOutputImage>
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::SmoothingRecursiveGaussianImageFilter()
{
// NB: The first filter is the last dimension because it does not
// always run in-place. As this dimension provides the least amount
// of cache coherency, it will provide the least amount of performance
// gains from running in-place. In fact, some performance tests
// indicate that the running in-place in the 3rd dimension the
// performance actually declines compared to not in-place methods.
m_FirstSmoothingFilter = FirstGaussianFilterType::New();
m_FirstSmoothingFilter->SetOrder(GaussianOrderEnum::ZeroOrder);
m_FirstSmoothingFilter->SetDirection(ImageDimension - 1);
m_FirstSmoothingFilter->SetNormalizeAcrossScale(m_NormalizeAcrossScale);
m_FirstSmoothingFilter->ReleaseDataFlagOn();
// InPlace will be set conditionally in the GenerateData method.
for (unsigned int i = 0; i < ImageDimension - 1; ++i)
{
m_SmoothingFilters[i] = InternalGaussianFilterType::New();
m_SmoothingFilters[i]->SetOrder(GaussianOrderEnum::ZeroOrder);
m_SmoothingFilters[i]->SetNormalizeAcrossScale(m_NormalizeAcrossScale);
m_SmoothingFilters[i]->SetDirection(i);
m_SmoothingFilters[i]->ReleaseDataFlagOn();
m_SmoothingFilters[i]->InPlaceOn();
}
m_SmoothingFilters[0]->SetInput(m_FirstSmoothingFilter->GetOutput());
for (unsigned int i = 1; i < ImageDimension - 1; ++i)
{
m_SmoothingFilters[i]->SetInput(m_SmoothingFilters[i - 1]->GetOutput());
}
m_CastingFilter = CastingFilterType::New();
m_CastingFilter->SetInput(m_SmoothingFilters[ImageDimension - 2]->GetOutput());
m_CastingFilter->InPlaceOn();
this->InPlaceOff();
// NB: We must call SetSigma in order to initialize the smoothing
// filters with the default scale. However, m_Sigma must first be
// initialized (it is used inside SetSigma), and it must be different
// from 1.0 or the call will be ignored.
this->m_Sigma.Fill(0.0);
this->SetSigma(1.0);
}
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::SetNumberOfWorkUnits(ThreadIdType nb)
{
Superclass::SetNumberOfWorkUnits(nb);
for (unsigned int i = 0; i < ImageDimension - 1; ++i)
{
m_SmoothingFilters[i]->SetNumberOfWorkUnits(nb);
}
m_FirstSmoothingFilter->SetNumberOfWorkUnits(nb);
}
template <typename TInputImage, typename TOutputImage>
bool
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::CanRunInPlace() const
{
// Note: There are two different ways this filter may try to run
// in-place:
// 1) Similar to the standard way, when the input and output image
// are of the same type, they can share the bulk data. The output
// will be grafted onto the last filter. In this fashion the input
// and output will be the same bulk data, but the intermediate
// mini-pipeline will use different data.
// 2) If the input image is the same type as the RealImage used for
// the mini-pipeline, then all the filters may re-use the same
// bulk data, stealing it from the input then moving it down the
// pipeline filter by filter. Additionally, if the output is also
// RealType then the last filter will run in-place making the entire
// pipeline in-place and only utilizing on copy of the bulk data.
return m_FirstSmoothingFilter->CanRunInPlace() || this->Superclass::CanRunInPlace();
}
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::SetSigma(ScalarRealType sigma)
{
SigmaArrayType sigmas(sigma);
this->SetSigmaArray(sigmas);
}
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::SetSigmaArray(const SigmaArrayType & sigma)
{
if (this->m_Sigma != sigma)
{
this->m_Sigma = sigma;
for (unsigned int i = 0; i < ImageDimension - 1; ++i)
{
m_SmoothingFilters[i]->SetSigma(m_Sigma[i]);
}
m_FirstSmoothingFilter->SetSigma(m_Sigma[ImageDimension - 1]);
this->Modified();
}
}
template <typename TInputImage, typename TOutputImage>
auto
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::GetSigmaArray() const -> SigmaArrayType
{
return m_Sigma;
}
template <typename TInputImage, typename TOutputImage>
auto
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::GetSigma() const -> ScalarRealType
{
return m_Sigma[0];
}
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::SetNormalizeAcrossScale(bool normalize)
{
m_NormalizeAcrossScale = normalize;
for (unsigned int i = 0; i < ImageDimension - 1; ++i)
{
m_SmoothingFilters[i]->SetNormalizeAcrossScale(normalize);
}
m_FirstSmoothingFilter->SetNormalizeAcrossScale(normalize);
this->Modified();
}
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::GenerateInputRequestedRegion()
{
// Call the superclass' implementation of this method. This should
// copy the output requested region to the input requested region.
Superclass::GenerateInputRequestedRegion();
// This filter needs all of the input
typename SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::InputImagePointer image =
const_cast<InputImageType *>(this->GetInput());
if (image)
{
image->SetRequestedRegion(this->GetInput()->GetLargestPossibleRegion());
}
}
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::EnlargeOutputRequestedRegion(DataObject * output)
{
auto * out = dynamic_cast<TOutputImage *>(output);
if (out)
{
out->SetRequestedRegion(out->GetLargestPossibleRegion());
}
}
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::GenerateData()
{
itkDebugMacro("SmoothingRecursiveGaussianImageFilter generating data ");
const typename TInputImage::ConstPointer inputImage(this->GetInput());
const typename TInputImage::RegionType region = inputImage->GetRequestedRegion();
const typename TInputImage::SizeType size = region.GetSize();
for (unsigned int d = 0; d < ImageDimension; ++d)
{
if (size[d] < 4)
{
itkExceptionMacro(
"The number of pixels along dimension "
<< d << " is less than 4. This filter requires a minimum of four pixels along the dimension to be processed.");
}
}
// If this filter is running in-place, then set the first smoothing
// filter to steal the bulk data, by running in-place.
if (this->CanRunInPlace() && this->GetInPlace())
{
m_FirstSmoothingFilter->InPlaceOn();
// To make this filter's input and out share the same data, call
// the InPlace's/Superclass's allocate methods, which takes care
// of the needed bulk data sharing.
this->AllocateOutputs();
}
else
{
m_FirstSmoothingFilter->InPlaceOff();
}
// If the last filter is running in-place then this bulk data is not
// needed, release it to save memory.
if (m_CastingFilter->CanRunInPlace())
{
this->GetOutput()->ReleaseData();
}
// Create a process accumulator for tracking the progress of this minipipeline.
auto progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter(this);
// Register the filter with the with progress accumulator using
// equal weight proportion.
for (unsigned int i = 0; i < ImageDimension - 1; ++i)
{
progress->RegisterInternalFilter(m_SmoothingFilters[i], 1.0 / (ImageDimension));
}
progress->RegisterInternalFilter(m_FirstSmoothingFilter, 1.0 / (ImageDimension));
m_FirstSmoothingFilter->SetInput(inputImage);
// Graft our output to the internal filter to force the proper regions
// to be generated, and the bulk data which be be from the input due
// to the in-place option.
m_CastingFilter->GraftOutput(this->GetOutput());
m_CastingFilter->Update();
this->GraftOutput(m_CastingFilter->GetOutput());
}
template <typename TInputImage, typename TOutputImage>
void
SmoothingRecursiveGaussianImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
for (unsigned int i = 0; i < ImageDimension - 1; ++i)
{
itkPrintSelfObjectMacro(SmoothingFilters[i]);
}
itkPrintSelfObjectMacro(FirstSmoothingFilter);
itkPrintSelfObjectMacro(CastingFilter);
os << indent << "NormalizeAcrossScale: " << m_NormalizeAcrossScale << std::endl;
os << indent << "Sigma: " << m_Sigma << std::endl;
}
} // end namespace itk
#endif
|