File: itkFFTDiscreteGaussianImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (138 lines) | stat: -rw-r--r-- 4,888 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#include <iostream>

#include "itkConstantBoundaryCondition.h"
#include "itkFFTDiscreteGaussianImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkTestingMacros.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"

template <typename ImageType>
int
itkFFTDiscreteGaussianImageFilterTestProcedure(int argc, char ** argv)
{
  float        sigma = (argc > 4) ? std::stof(argv[4]) : 0.0;
  float        kernelError = (argc > 5) ? std::stof(argv[5]) : 0.01;
  unsigned int kernelWidth = (argc > 6) ? std::stoi(argv[6]) : 32;
  unsigned int filterDimensionality = (argc > 7) ? std::stoi(argv[7]) : ImageType::ImageDimension;
  unsigned int kernelSource = (argc > 8) ? std::stoi(argv[8]) : 0;

  typename ImageType::Pointer inputImage = itk::ReadImage<ImageType>(argv[2]);

  using FilterType = itk::FFTDiscreteGaussianImageFilter<ImageType, ImageType>;
  auto filter = FilterType::New();
  ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, FFTDiscreteGaussianImageFilter, DiscreteGaussianImageFilter);

  // Test setting inputs

  filter->SetInput(inputImage);

  filter->SetSigma(sigma);
  for (auto & param : filter->GetSigmaArray())
  {
    ITK_TEST_EXPECT_EQUAL(sigma, param);
  }
  for (auto & param : filter->GetVariance())
  {
    double tolerance = 1e-6;
    ITK_TEST_EXPECT_TRUE(std::fabs((sigma * sigma) - param) < tolerance);
  }

  filter->SetMaximumError(kernelError);
  for (size_t dim = 0; dim < ImageType::ImageDimension; ++dim)
  {
    ITK_TEST_SET_GET_VALUE(kernelError, filter->GetMaximumError()[dim]);
  }

  filter->SetMaximumKernelWidth(kernelWidth);
  ITK_TEST_SET_GET_VALUE(kernelWidth, filter->GetMaximumKernelWidth());

  filter->SetFilterDimensionality(filterDimensionality);
  ITK_TEST_SET_GET_VALUE(filterDimensionality, filter->GetFilterDimensionality());

  itk::ZeroFluxNeumannBoundaryCondition<ImageType> zfnBoundaryCondition;
  filter->SetRealBoundaryCondition(&zfnBoundaryCondition);
  ITK_TEST_SET_GET_VALUE(&zfnBoundaryCondition, filter->GetRealBoundaryCondition());

  itk::FFTDiscreteGaussianImageFilterEnums::KernelSource source;
  if (kernelSource == 0)
  {
    source = itk::FFTDiscreteGaussianImageFilterEnums::KernelSource::OPERATORS;
  }
  else
  {
    source = itk::FFTDiscreteGaussianImageFilterEnums::KernelSource::IMAGE_SOURCE;
  }
  filter->SetKernelSource(source);
  ITK_TEST_SET_GET_VALUE(filter->GetKernelSource(), source);

  // Test that attempting to set unused interface parameters throws warnings
  // Ignore values from "Get" methods as these are unused

  itk::ConstantBoundaryCondition<ImageType> constantBoundaryCondition;
  filter->SetInputBoundaryCondition(&constantBoundaryCondition);

  // Run convolution

  ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());

  itk::WriteImage(filter->GetOutput(), argv[3], true);

  // Test streaming enumeration for FFTDiscreteGaussianImageFilterEnums::KernelSource elements
  for (const auto val : { itk::FFTDiscreteGaussianImageFilterEnums::KernelSource::OPERATORS,
                          itk::FFTDiscreteGaussianImageFilterEnums::KernelSource::IMAGE_SOURCE })
  {
    std::cout << "STREAMED ENUM VALUE FFTDiscreteGaussianImageFilterEnums::KernelSource: " << val << std::endl;
  }

  return EXIT_SUCCESS;
}

int
itkFFTDiscreteGaussianImageFilterTest(int argc, char * argv[])
{
  if (argc < 5)
  {
    std::cerr << "Missing parameters." << std::endl;
    std::cerr << "Usage:" << std::endl;
    std::cerr
      << itkNameOfTestExecutableMacro(argv)
      << " imageDimension inputFilename outputFilename sigma kernelError kernelWidth filterDimensionality kernelSource"
      << std::endl;
    return EXIT_FAILURE;
  }

  const unsigned int ImageDimension = static_cast<unsigned int>(std::stoi(argv[1]));

  if (ImageDimension == 2)
  {
    itkFFTDiscreteGaussianImageFilterTestProcedure<itk::Image<float, 2>>(argc, &argv[0]);
  }
  else if (ImageDimension == 3)
  {
    itkFFTDiscreteGaussianImageFilterTestProcedure<itk::Image<float, 3>>(argc, &argv[0]);
  }
  else
  {
    std::cout << "Did not recognize image dimension argument!" << std::endl;
    return EXIT_FAILURE;
  }
  return EXIT_SUCCESS;
}