File: itkMeanImageFilterGTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (131 lines) | stat: -rw-r--r-- 5,170 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// First include the header file to be tested:
#include "itkMeanImageFilter.h"

#include "itkImage.h"
#include "itkVectorImage.h"
#include "itkImageBufferRange.h"

#include <numeric> // For iota.
#include <vector>

#include <gtest/gtest.h>

namespace
{
template <typename TImage>
void
Expect_output_pixels_have_same_value_as_input_when_input_image_is_uniform(
  const typename TImage::RegionType & imageRegion,
  const typename TImage::PixelType &  inputPixelValue)
{
  using PixelType = typename TImage::PixelType;

  const auto image = TImage::New();
  image->SetRegions(imageRegion);
  image->SetNumberOfComponentsPerPixel(itk::NumericTraits<PixelType>::GetLength(inputPixelValue));
  image->Allocate();
  image->FillBuffer(inputPixelValue);

  const auto filter = itk::MeanImageFilter<TImage, TImage>::New();
  filter->SetInput(image);
  filter->Update();

  const TImage * const output = filter->GetOutput();

  ASSERT_NE(output, nullptr);

  for (const PixelType outputPixelValue : itk::MakeImageBufferRange(output))
  {
    EXPECT_EQ(outputPixelValue, inputPixelValue);
  }
}


// Creates a test image, filled with a sequence of natural numbers, 1, 2, 3, ..., N.
template <typename TImage>
typename TImage::Pointer
CreateImageFilledWithSequenceOfNaturalNumbers(const typename TImage::RegionType & imageRegion)
{
  using PixelType = typename TImage::PixelType;
  const auto image = TImage::New();
  image->SetRegions(imageRegion);
  image->Allocate();
  const auto imageBufferRange = itk::ImageBufferRange{ *image };
  std::iota(imageBufferRange.begin(), imageBufferRange.end(), PixelType{ 1 });
  return image;
}


template <typename TImage>
void
Expect_output_has_specified_pixel_values_when_input_has_sequence_of_natural_numbers(
  const typename TImage::RegionType &             imageRegion,
  const std::vector<typename TImage::PixelType> & expectedPixelValues)
{
  using PixelType = typename TImage::PixelType;

  const auto inputImage = CreateImageFilledWithSequenceOfNaturalNumbers<TImage>(imageRegion);
  const auto filter = itk::MeanImageFilter<TImage, TImage>::New();
  filter->SetInput(inputImage);
  filter->Update();

  const TImage * const         outputImage = filter->GetOutput();
  const auto                   outputImageBufferRange = itk::MakeImageBufferRange(outputImage);
  const std::vector<PixelType> outputPixelValues(outputImageBufferRange.cbegin(), outputImageBufferRange.cend());

  EXPECT_EQ(outputPixelValues, expectedPixelValues);
}

} // namespace


// Tests that for a uniform input image, the output pixels have the same value as the input pixels.
TEST(MeanImageFilter, OutputSameAsInputForUniformImage)
{
  Expect_output_pixels_have_same_value_as_input_when_input_image_is_uniform<itk::Image<int>>(itk::Size<>{ { 5, 6 } },
                                                                                             64);
  Expect_output_pixels_have_same_value_as_input_when_input_image_is_uniform<itk::Image<float, 3>>(
    itk::Size<3>{ { 3, 4, 5 } }, 0.5f);

  float                            array[] = { 3.14f, 2.71f, 1.41f };
  itk::VariableLengthVector<float> v{ array, 3 };
  Expect_output_pixels_have_same_value_as_input_when_input_image_is_uniform<itk::VectorImage<float, 3>>(
    itk::Size<3>{ { 3, 4, 5 } }, v);
}


// Tests that the output pixel values are as expected for an example input image that is filled with
// the sequence of natural numbers, 1, 2, 3, ...
TEST(MeanImageFilter, ExpectedOutputPixelValuesForSequenceOfNaturalNumbers)
{
  Expect_output_has_specified_pixel_values_when_input_has_sequence_of_natural_numbers<itk::Image<int>>(
    itk::Size<>{ { 1, 1 } }, { 1 });
  Expect_output_has_specified_pixel_values_when_input_has_sequence_of_natural_numbers<itk::Image<int>>(
    itk::Size<>{ { 1, 2 } }, { 1, 1 });
  Expect_output_has_specified_pixel_values_when_input_has_sequence_of_natural_numbers<itk::Image<int>>(
    itk::Size<>{ { 2, 1 } }, { 1, 1 });
  Expect_output_has_specified_pixel_values_when_input_has_sequence_of_natural_numbers<itk::Image<int>>(
    itk::Size<>{ { 2, 2 } }, { 2, 2, 2, 3 });
  Expect_output_has_specified_pixel_values_when_input_has_sequence_of_natural_numbers<itk::Image<int>>(
    itk::Size<>{ { 3, 3 } }, { 2, 3, 3, 4, 5, 5, 6, 7, 7 });
  Expect_output_has_specified_pixel_values_when_input_has_sequence_of_natural_numbers<itk::Image<int, 3>>(
    itk::Size<3>{ { 2, 2, 2 } }, { 3, 3, 4, 4, 4, 5, 5, 5 });
}